
1 i i H11 |i 1 {1' w i ^l| [j;5^

LANGUAGES

Modular.
Integrated.

Now.

Handle WrHer/Speir*'
Word processing with integrated

speliing correction and verification.

Handle Calc^'*
Spreadsheet with up to 32,000
rows and coiumns. Conditionai

and iterative recalculation.

The Handle Office-Airiomotion Series is a powerful set of modular,
integrated software tools developed for today's multiuser office
environment. Handle application modules can be used stand-alone
or combined into a fully integrated system.

The Handle Office-Automation Series modules offer;

• Ease of Use and Learning
• Insulation from UNIX
• Data Sharing Between Multiple Users
• Data Integration Between Modules
• Data Sharing with Other Software Products
• Sophisticated Document Security System

Handle Technologies, Inc.

Coiporote Office
6300 Richmond

3rd Fioor
Houston, TX 77057

(713)266-1415

Sales and Product Information
850 North Lake Tahoe Blvd.

P.O.Box 1913
Tahoe City, CA 95730

(916) 583-7283

TM-HANDLE. handle host, handle writer, handle spell handle writer/spell and HANDLE CALC ARE TRADEMARKS OF HANDLE TECHNOLOGIES, INC.

TM-UNIX is a trademark of AT&T BELL LABORATORIES.

Circle No. 287 on Inquiry Card

How to go
from

UNIX to DOS
without

compromising
your

standards.
It’s easy. Just get an industry standard file

access method that works on both.
C-ISAM“fromRDS.
It’s been the UNIX'“ standard for years

(used in more UNIX languages and programs
than any other access method), and it’s fast
becoming the standard for DOS.

Why?
Because of the way it works. Its B+ Tree

indexing structure offers unlimited indexes.
There’s also automatic or manual record
locking and optional transaction audit
trails. Plus index compression to save disk
space and cut access times.

© 1985, Relational DatalxLse Systems, Inc. UNIX is a trademark of AT&T Bell Laboratories.
INFORMIX is a registered trademark and RDS, C-ISAM and File-lt! are trarlemarks of
Itelational Database Systems, Inc.

How can we be so sure C-ISAM works
so well? We use it ourselves. It’s a part
of INFORMIX: INFORMIX-SQL and File-iti:
our best selling database management
programs.

For an information packet, call (415)
424-1300. Or write RDS, 2471 East Bayshore
Road, Palo Alto, CA 94303.

Youll see why anything less than C-ISAM
is just a compromise.

RELATIONAL DATABASE SYSTEMS, INC.

Circle No. 290 on Inquiry Card

How we
iimroved Structured

Query Language.
Actually, we didn’t change a thing.

We just combined it with the best
relational database management system.

Introducing INFORMIX-SQL.
It runs on either UNIX™ or MS™-DOS

operating systems. And now with IBM’s SQL grams with ours. File-itr our easy-to-use

as part of the program, you can ask more of
your database. Using the emerging industry-

standard query language.
To make your job

easier, INFORMIX-SQL
comes with the most complete
set of application building
tools. Including a full report

writer and screen generator. Plus a family
of companion products that all work
together.

Like our embedded SQLs for C and
COBOL. So you can easUy link your pro-

INFORMIX is a registered trademark and RDS, C-ISAM and File-it! are trademarks of Relational Database Systems, Inc. IBM, UNIX and MS are trademarks of IntemaUonal Business Machines CorporaUon,
AT&T 1^11 Laboratories and Microsoft, respectively. O 1985, Relational Database Systems, Inc.

file manager. And C-ISAMr the de facto
standard ISAM for UNIX. It’s built into all
our products, but you can buy it separately.

And when you choose RDS, you’ll be
in the company of some other good com¬
panies. Computer manufacturers including
AT&T, Northern Telecom, Altos and over
60 others. And major corporations like
Anheuser Busch, First National Bank of
Chicago and Pacific Bell.

Which makes sense. After all, only RDS
offers a family of products that work so well
together. As well as with so many industry
standards.

So call us for a demo, a manual and a
copy of our Independent Software Vendor
Catalog. Software vendors be sure to ask
about our new “Hooks” software integration
program. Our number: 415/424-1300.

Or write RDS, 2471 East Bayshore Road,
Palo Alto, CA 94303.

And we’ll show you how we took a good
idea and made it better.

RELATIONAL DATABASE SYSTEMS, INC.

UNIX REVIEW
THE PU9LICATI0N FOR THE UNIX COMMUNITY

Volume 3,

Number 9

September 1985

DEPARTMENTS: FEATURES:

6 Viewpoint

8 The Monthiy Report

By David Chandler

18 The Human Factor

By Richard Morin

64 Industry Insider

By Mark G. Sobell

68 C Advisor

By Bill Tuthill

74 Ruies of the Game

By Glenn Groenewold

80 Devii's Advocate

By Stan Kelly-Bootle

82 Probiem Soiver

By Bob Toxen

88 The UNiX Giossary

By Steve Rosenthal

92 Recent Releases

100 Calendar

104 The Last Word

108 Advertiser's index

Cover art by Stephen G. Luker

22 THE RIGHT LANGUAGE

FOR THE JOB

By Joel McCormack

A survey of the principal languages
available under UNIX.

THE HOUSE OF MANY
TONGUES

By Steve Johnson

In the UNIX environment, there is a
language to every purpose.

LANGUAGES
38 SOURCE CODE

MAINTENANCE

By Marc Rochkind

Where the challenges lie and how
sees can help.

42 INTERVIEW WITH STU
FELDMAN

By Dick Karpinski

The author of f77, EFL, and make
discusses the state of language
technology.

50 TOWARDS ANSI C

By Thomas Plum

How the e standards efforts are
shaping up.

51 LISP ON THE MOVE

By Joel Hass

What are the ties that bind UNIX and
Lisp?

UNIX REVIEW IISSN-0742-31 36) is published monthly by REVIEW Publications Co. It is a publication dedicated exclusively to the needs of the UNIX community
Second class postage paid at Renton, WA 98055 and at additional mailing offices. POSTMASTER: Please send Form 3579 to UNIX REVIEW, 500 Howard Street San
Francisco, CA 94105. Entire contents copyright 1985. All rights reserved and nothing may be reproduced in whole or in part without prior written permission from
UNIX REVIEW
Subscriptions to UNIX REVIEWare available at the following annual rates (1 2 issues); US$28 in the US; US$35 in Canada; US$48 in all other countries/surface mail;
US$85 in all other countries/airmail. Correspondence regarding editorial (press releases, product announcements) and circulation (subscriptions, fulfillment, change
of address) should be sent to 500 Howard Street. San Francisco. CA 94105. Telephone 41 5/397-1881. Correspondence regarding dealer sales should be sent to 901
South 3rd Street, Renton. WA 98055. Telephone 206/271-9605.
Letters to UNIX REVIEW or its editors become the property of the magazine and are assumed intended for publication and may so be used. They should include the
writer's full name, address and home telephone number. Letters may be edited for the purpose of clarity or space. Opinions expressed by the authors are not
necessarily those of UNIX REVIEW.
UNIX is a trademark of Bell Laboratories. Inc. UNIX REVIEW is not affiliated with Bell Laboratories.

UNIX REVIEW SEPTEMBER 1985 5

PUBLISHER:

Pamela J McKee
ASSOCIATE PUBLISHERS:

Ken Roberts, Scott Robin

EDITORIAL DIRECTOR:
Stephen J Schneiderman

EDITOR:

Mark Compton

ASSOCIATE EDITOR:

David Chandler

EDITORIAL ADVISOR:

Dr Stephen R Bourne. Consulting Software
Engineer, Digital Equipment Corporation.

EDITORIAL REVIEW BOARD:

Dr. Greg Chesson, Chief Scientist, Silicon Graphics,
Inc.

Larry Crume, Director, AT&T UNIX Systems
Far East

Ted Dolotta, Senior Vice President of Technology,
Interactive Systems Corporation

Gene Dronek. Director of Software. Aim
Technology

Ian Johnstone, Project Manager, Operating
Software, Sequent Computer Systems

Bob Marsh. Chairman. Plexus Computers
John Mashey, Manager, Operating Systems.

MIPS Computer Systems
Robert Mitze, Department Head, UNIX Computing

System Development. AT&T Bell Labs
Deborah Scherrer. Computer Scientist. Mt. Xinu
Jeff Schriebman, President, UniSoft Systems
Rob Warnock. Consultant
Otis Wilson, Manager. Software Sales and

Marketing. AT&T Information Systems

HARDWARE REVIEW BOARD:

Gene Dronek. Director of Software, Aim
Technology

Doug Merritt, Technical Staff, International
Technical Seminars. Inc.

Richard Morin, Consultant, Canta Forda Computer
Laboratory

Mark G. Sobell, Consultant

SOFTWARE REVIEW BOARD:

Ken Arnold, Consultant. UC Berkeley
Jordan Mattson, Programmer. UC Santa Cruz
Dr Kirk McKusick. Research Computer Scientist. UC

Berkeley
Doug Merritt. Technical Staff, International

Technical Seminars, Inc.
Mark G Sobell, Consultant

CONTRIBUTING EDITOR:

Ned Peirce, Systems Analyst. AT&T Information
Systems

PRODUCTION DIRECTOR:

Nancy Jorgensen

PRODUCTION STAFF:

Cynthia Grant. Tamara V. Heimarck, Carrie
Hunkapiller. Florence O'Brien, Barbara Perry, Denise
Wertzler

BUSINESS MANAGER:

Ron King
CIRCULATION DIRECTOR:

Wini D Ragus

CIRCULATION MANAGER:

Jerry M. Okabe
MARKETING MANAGER:

Donald A Pazour

OFFICE MANAGER:

Tracey J. McKee

TRAFFIC:

James A O'Brien, Manager
Tom Burrill. Dan McKee, Corey Nelson

NATIONAL SALES OFFICES:

500 Howard St.
San Francisco. CA 94105
(415) 397-I88I

Regional Sales Manager.
Colleen M Y Rodgers
Sales/Marketing Assistant.
Anmarie Achacoso

370 Lexington Ave.
New York. NY 1001 7
(212) 683-9294

Regional Sales Manager:
Katie A McGoldrick

BPA membership applied for in March, 1985

VIEWPOINT
The way, the truth, and the life

I’ve often heard that tech¬
nology is the religion of our age.
Two years in the UNIX com¬
munity have convinced me.

Independent of whatever feel¬
ings people on the outside might
have, a sense of righteousness
runs strong among the believers.
Dutifully, many of the faithful
have gone forth into the world
and multiplied.

Alas, as with every religion,
elders in this true Church seem
ever to be embroiled in debate.
Should services be conducted in
C or Modula-2? Was not Lisp
handed down on Mt. Sinai from
the heavens?

Answers do not come quickly.
As Steve Johnson notes, unto
every purpose there is a language
in the UNIX environment. It is
neither necessary nor desirable
that these be distilled into a
single tongue, but natural selec¬
tion nonetheless will take its
course (a mixed metaphor if ever
there was one).

Which languages will ascend
to the altar and which will fall
by the wayside? Debates on
this question seem like so much
crying in the wilderness.

Verily I say to you, all the
preaching in the world cannot
deter the mysterious ways in
which inertia works. Once a lan¬
guage (or an operating system,
for that matter) has become
entrenched, momentum alone
ensures that it will not easily be
displaced. Would-be heirs must

offer significant improvements to
make inroads—particularly if
investment in the incumbent has
been substantial. Perhaps natu¬
ral selection is predestined after
all.

Make no mistake—C is the
rock upon which UNIX is built.
Although Joel McCormack makes
a convincing argument in this
month’s lead article for the adop¬
tion of Modula-2 as the language
of choice for UNIX development,
he acknowledges that his cause
faces an uphill fight. As evidence,
he comments on the other major
languages under UNIX, telling of
the advantages they offer and the
reasons they have failed to sup¬
plant C in the inner sanctum.

Modula-2 doubtless will grow
in popularity, but C’s defenders
will not stand by idly. Never mind
that C is getting on in years—that
its design, though well suited to
limited environments, has failed
to keep pace with technology. The
stake in C is great. Vast numbers
of programmers have grown com¬
fortable with it and the body of C
software is substantial. The ques¬
tion, in any event, is strictly a
religious matter.

6 UNIX REVIEW SEPTEMBER 1985

The First Name In
Integrated Office

Automation Software

• Executive Mail
• Telephone

Directory

Certified and
Deiiverabie Since 1981

Menu Processor
Word Processor
Forms/Data Base
Spreadsheet

XED was the first independent software
company to introduce a Unix WP package
and achieved early success by selling to
the government and international market
(XED is the only Unix WP package to meet
government specifications). Worldwide
sales of XED rank Computer Methods first
in both sales and units installed in 1984.

INTEGRATED OFFICE SOFTWARE

Box 3938 • Chatsworth, CA 91313 U.S.A. • (818) 884-2000
FAX (818) 884-3870 • Inti. TLX 292 662 XED UR

XED is a registered trademark of CCL Datentechnik AG

UNIX is a trademark of AT & T Bell Laboratories, Inc. Circle iMo. 279 on inquiry Card

THE MONTHLY
REPORT
AT&T: Guns are the bread and butter

by David Chandler

Andrew Pollack of The New
York Tin\es, commenting on a
recent announcement made by
AT&T, referred to what he called
the company's “drowsy start in
the computer business”. Some
days previous. The Wall Street
Journal had run a page-two story
on the same announcement, re¬
lating it to AT&T’s “fledgling
computer business”.

[before loyalists to the telecom¬
munications giant start general¬
izing about the eastern establish¬
ment media, though, pause to
consider the adjectives “drowsy”
and “fledgling”. The terms them¬
selves don’t indicate failure, nor
inability—“drowsy”, of course,
describes non-energetic activity,
and “fledgling” refers to a young
bird just “fledged”, having just
acquired the feathers necessary
for flight. The point is that the
potential for vigor and success is
present but not yet exhibited.
After all, learning to fly is a
process, and AT&T only now is
learning to flap its wings.

rhe announcement to which
the Times and Journal were
referring called attention to a
contract awarded to AT&T by the
US Department of Defense (DoD)
to |)rovide, install, and maintain
System V-based, 3B Series com¬
puter systems. Should the DoD
exercise all options, the con¬
tract's value would approach
$946 million, the largest contract
of its kind for AT&T.

“This is a very large procure¬
ment which we worked very hard
on for more than a year,” said
Warren Corgan, Vice President of
AT&T Federal Systems Division.
Indeed, the DoD selected AT&T
over many major vendors, includ¬
ing IBM, DEC, Honeywell, Sperry,
and Gould. Neil Yelsey, an analyst
with Solomon Brothers Inc., was
quoted by the JournaL “This is a
shot in the arm [this is, remem¬
ber, a defense contract] for
both AT&T’s architecture and its
(UNIX) operating system”.

For all the work, money, and
attention the contract brings,
both AT&T and the government
were very limited in their com¬
ments, declining to elaborate on a
one-page press release “cleared
througli proper channels”. On
the one hand this is understand¬
able. Defense Department regula¬
tions being what they are. A
source inside AT&T even ad¬

mitted that the Journal article
was “not in keeping with DoD
policy”. The contract is actually
with the National Security Agen¬
cy, an intelligence organization
within the DoD.

On the other hand, there is
ever-present speculation on
how such deals as this one will
afl'ect computer industry stan¬
dards. Billion-dollar contracts for
machines running UNIX raise
eyebrows, especially when one of
the parties is the federal govern¬
ment. a strong voice in the setting
of standards. For the time being,
however, given the restrictions on
government comment, the UNIX
community is limited to specula¬
tion. Voices proclaiming UNIX
success generally can olTer public
knowledge, but when they enter
the DoD cloister, they must take a
\^ow of silence.

The DoD project will be man¬
aged by AT&T’s Federal Systems
Division based in Greensboro,
NC. A field oflice will be set up in
the Washington, DC, area to pro¬
vide on-site support.

WE WILL SAY THIS

A topic AT&T willingly ad¬
dresses is its June announce¬
ment of some 70 hardware and
software products. Of signifi¬
cance among these are: 1) two
new machines based on the
WE32100 processor, the 3B2/
400 and the 3B1 5: 2) communica¬
tion processors for connecting

8 UNIX REVIEW SEPTEMBER 1985

''Our customers told
us what they wanted
in word processing:
Compatibility
Flexibility
Ease of Learning
Vendor Reliability
Cost Effectiveness

We listened.
The Professional Writer’s
Package is the result. ”

Compatibility. A word processor for all machines, UNIX or MS-DOS^".

l il/iKkcr, UNIX SiKiialist
IVcIiiiology

Flexibility. A word processor for every use, whether it’s writing complicated manuals or preparing simple letters.

Ease of Learning. Time and money shouldn’t be wasted in training. On-line help, on-line tutorials with
step-by-step instructions.

Vendor Reliability. Extensive word processing experience, a large installed base, accessible technical support,
and a liberal update policy.

Cost Effectiveness. With these capabilities you can’t afford not to have the Professional Writer’s Package.^"

K Call or write for information:
EIIIE 1^711 1^7 4760 Walnut Street, Boulder, Colorado 80301 800/782-4896 303/447-9495 Circle No. 253 on Inquiry Card

TECHNOLOGY
UNIX is a trademark of Bell Laboratories. MS-DOS is a trademark of Microsoft Ca)rporation. Professional Writer’s Package is a trademark of Emerging Technology Consultants, Inc.

I HE MONTHLY REPORT

3Bs to mainframes: and 3) Sys¬
tem V-VM.

The 3B2/400 is a System V.2-
based desktop computer for use
in the 10-25 user range, with
standard features including the
32100 processor (32/32-bit archi¬
tecture), 1 MB of RAM, a 10 MHz
clock, a 720 KB floppy disk drive,
one or two integral hard disk
drives (each 30 MB or 72 MB), and
an integral 23 MB cartridge tape
backup unit. Options are empha¬
sized, including the ability to
expand RAM to 4 MB, and a Math
Accelerator Unit (MAU), also
known as a 32106 co-processor.
Four configurations are suggest¬
ed, ranging in price from $ 19,950
to $36,550.

The 3B15 is an upgrade of the
3FT5, with the same architecture
and CPU from the same family as
for the smaller machine, but also
ofTering a demand-paged man¬
agement system, 40 percent more
CPU power, and mandatory file
and record locking. The 3B15’s
32100 processor runs at 14 MHz
under System V Release 2.1 (2.1
denoting the support of demand
paging and a more powerful C
compiler), with 2 MB of RAM, the
32106 MAU, and an 8 KB cache
memory. Three suggested con¬
figurations for the 3B15 are
priced from $54,500 to $64,500.

While enhancements to the 3B
series are welcome, a point not
immediately clear is which spe¬
cific customer markets AT&T is
targeting with these upgrades.
Company representatives claim
that, depending on the software,
the 3B2/400 and 3B15 can be
used either in scientific or of¬
fice automation applications. But
these days it is asking a great deal
of a machine to succeed in either
of these environments, and to
expect it to succeed in both is an
excessively heavy burden. While
AT&T mentions the needs of
Fortune 2000 firms and the 3B
enhancements that were made to

meet these needs, the 400 and the
15 also have or will offer such
things as the MAU and demand¬
paging—features usually associ¬
ated with scientific applications.

The connection of the AT&T
Communication Processor to For¬
tune 2000 applications is more
readily apparent. A hardware in¬
terface “intended primarily to

Voices proclaiming

UNIX success generally

can offer public

knowledge, but when

they enter the DoD

cloister, they must take

a vow of silence.

serve the mainframe connectivity
needs of users of networked 3B
computers using AT&T 3BNET”,
the processor is a node on a
3E5NET network that links 3Bs to
IBM hosts. It runs on its own real¬
time operating system, and takes
care of protocol conversions be¬
tween the 3BNETand SNA/SDLC
standards, relieving the 3Bs and
IBM host of that task. Contained
in the processor’s control unit are
its own processor, disk drive,
memory, and special feature
cards. There are two models,
Model 1 emulating a channel or
local connection to the IBM host;
and Model 2, designed for remote
applications, emulating a 3270-
type cluster controller.

Note that computers running
earlier releases of System V must
be upgraded to swapping versions
of Release 2.0 in order to support
a communication processor. Note
also that the product is being

introduced on a controlled basis
only, and won't be generally avail¬
able until the first quarter of
1986. And one final note: if
budgets are your concern, con¬
cerned you well may be—the
communications processor sells
for $27,000.

With the objective of enabling
System V functions to be support¬
ed on IBM and compatible main¬
frames, AT&T has released Sys¬
tem V-VM. The product is AT&T’s
version of Amdahl Corp.’s UTS/V,
and is a complete System/370
implementation of System V.2.
Both Amdahl and AT&T had a key
part in developing the product,
working for about a year on
upgrading UTS for this specific
purpose. The companies will con¬
tinue working together to en¬
hance the system. System V-VM
provides full screen usage of 3270
terminals, up to 16 MB of user
address space, virtual I/O capa¬
bility, and other large system-
oriented enhancements. General
availability of System V-VM, in
binary or source package, is set
for October, but only on a year-by-
year lease.

Jay Peterson, AT&T Supervi¬
sor for UNIX planning and prod¬
uct management, and Vish Vish-
wanath, UNIX Product Manager
for System V-VM, were asked to
compare V-VM with IBM’s VM-
UNIX product, VM/IX. V-VM, they
said, is based on System V Re¬
lease 2, and therefore offers a
higher degree of compatibility
with newer UNIX-related prod¬
ucts. Second, V-VM provides sup¬
port for full-duplex ASCII ter¬
minals and so can run interactive
programs, something VM/IX can¬
not do. Also, V-VM contains Docu-
menter’s Workbench and other
software, including some F3erke-
ley features, not found as part of
VM/IX.

David Buck, chairman of DL
Buck and Associates, a company
that supplies hardware manufac-

10 UNIX REVIEW SEPTEMBER 1985

IBM PC AT

XENIX TAPE

* 45/60 MEGABYTES

* 90 IPS STREAMING

* HIGH SPEED SOFTWARE

* NOW ONLY $1095*

SHIPPING TODAY
The Bell XTC’" Xenix Streaming Tape System for the IBM PC AT and compatibles provides 45 or 60
Megabytes of high performance tape backup using ANSI standard 1/4” tape cartridges. 100% Xenix and IBM
AT compatible. Production units are shipping today.

PEACE OF MIND THROUGH IBM QUALITY STANDARDS
The Wangtek 5000E unit at the heart of the Bell XTC system is the same high performance streaming tape
drive used in the tape backup system sold by IBM. You get worldwide maintenance, economy of scale, and
quality control driven by IBM standards, the highest in the industry. Don't settle for anything less.

HIGHEST PERFORMANCE HARDWARE
The XTC drive streams at 90 inches per second with data throughput up to 5 megabytes per minute. Bell’s
XTC optomizes performance with on-drive microprocessor, full DMA data transfer, automatic read-while-
write ECC and smart controller data buffering.

UNIX SOFTWARE THAT MAKES DOS LOOK SLOW
Our staff has written over 50 tape device drivers on all of the Unix releases and has ported the entire Unix
system many times. In addition to standard IBM Xenix tar, dump, backup and restore, we provide Bell
proprietary high speed utilities for lightning fast backup. DOS software available too.

EASY TO INSTALL - INTERNAL OR EXTERNAL UNITS
Procure the Bell XTC in the internal IBM PC AT version for quick and clean installation, or as an external unit
complete with AT-matching cabinet. We provide all cables, software and everything else needed for
installation in minutes.

Bell Technologies
Post Office Box 8323, Fremont, California 94537
Sales Office; (415) 792-3646

‘One time introductory unit price valid for prepaid orders received
during September and November 1985. Limit one per customer,
internal mount units only. Regular price $1695, with volume pur¬
chase. OEM and reseller discounts available. Call Bell Technologies
for best price and highest quality. Order your introductory unit today.

Circle No. 233 on Inquiry Card

Unix is a trademark of Bell Labs. Xenix is a trademark of Microsoft Corp.

M(>NHUV RLPORT

turers with UNIX applications
and drivers to interface their

systems with IBM systems, offers
another perspective on V-VM.
AT&T has been under pressure

for some time to put out a virtual
memory product. Buck said. Oth¬

ers already have gone ahead and
done it under UNIX, but many

nevertheless are pleased to see
AT&T now bless the effort. Com¬
paring V-VM with IBM’s VM/IX,
liowever, is a bit like comparing
apples (no pun intended) and

oranges. The products have simi¬
lar names but somewhat differ¬
ent purposes. “V-VM allows

people to make good use of mi¬
croprocessors”, whereas “main¬

frame users (running VM/IX) are
not precluded from doing UNIX”.

The emphasis of AT&T’s clus¬

ter of recent product announce¬
ments is on communications, the
company’s traditional strength;
and, of course, the fact that it has

now officially adopted links with

IBM hardware is a welcome sight
to fortune 2000 customers. Only
time and customers will tell,
though, how significant these
products will prove to be in the
greater scheme of computer com¬
pany jousting. The products may
or may not determine if AT&T’s
computer business is still consid¬
ered by some to be “fledgling”.

WORK—BUT DON'T SMIRK-

STATIONS

'Someday, girl,
I don't know when,
we're gonna get to that place
we really want to go
and we'll walk in the Sun,
But till then, tramps like us,
baby, we were born to run".

Bruce Springsteen

Doubtless Mr. Springsteen was
not making an ambiguous refer¬
ence to Sun Microsystems in
composing these lyrics. He none¬
theless conveys a sense of hope

and desperation, and these feel¬
ings may well be growing at
various workstation manufactur¬

er sites around the country. This
summer has been witness to

While enhancements

to the 3B series are

welcome, a point not

Immediately clear is

which specific

customer markets

AT&T Is targeting with

these upgrades.

many technologies making the
all-important business transition
from rumors on research to ma¬
chines coming off the line ready
for sale. A primary example of
this is the growing number of
graphics workstations for engi¬
neering and scientific applica¬
tions now appearing or scheduled

to appear soon in the micro
marketplace. The competition is
heating up, and customers will

have to start squinting to see past
the smoke to find the product that
will suit them.

Before deciding which work¬
station to buy, it’s helpful to have
a general notion of what com¬
poses a workstation. As impres¬
sive as the new 68020 micro¬
processor is, simply putting one
in an old-model microcomputer
does not a workstation make.
UNIX REVIEW has looked at work¬
stations before (January and
July, 1985), and a working defini¬

tion was offered in those issues.
Richard Morin, one of our colum¬
nists and author of the January

article, “The Future of the UNIX

Workstation”, points out the ba¬

sic components: a graphics termi¬
nal with high speed, high resolu¬
tion screen and communications;

an added processor; added mem¬

ory; and added software. There
are also certain traits or capaci¬
ties based on the “four Ms”:

Mouse (or other pointing device).

Megabyte (1 MB of RAM), Million
Instructions Per Second (1 MIPS),
and (1) Million pixels. Though
helpful for listing workstation

traits, current industry demands
are such that the Ms should now

be modified: for engineering and

scientific applications, 2-4 MB of
RAM are required; it’s also benefi¬
cial to run at a speed somewhat
faster than 1 MIPS. (A 68020
runs at 1.5 MIPS or so.)

Given this, consider the new
offerings put forth by some sub¬
stantial players. In the good old
days (that is, a matter of months
ago), there was Sun, Apollo, Cad¬

mus, and Integrated Solutions.
These four are still in the game
(all are upgrading their products),
but now there's also the DEC
VAXstation II. the HP 9000 Series
300, the MassComp 500-Series
upgrades, the Tektronix 6000
series and Tekstation AT, and

even another Sun, the 2/130.
Surely, there are more to come.

DEC’S VAXstation II was as¬
sessed by Mark Sobell in his July
column, so we proceed here to a
description of the HP 9000 Series
300, currently available to OEMs
and ISVs. Hewlett-Packard is tak¬
ing the modular approach with
the series, offering a choice of
CPUs, displays, systems soft¬
ware, and peripherals. This can
make comparison difficult, but
the variety allows the customer to
tailor the system and plan for
future upgrades. Glenda McCall,
HP Product Marketing Engineer,
tells of four pricing bundles
prepared for what HP consid¬
ers two main markets—measure-

12 UNIX REVIEW SEPTEMBER 1985

Making UNIX Easier with TEN/PLUS

Easier to Learn

Get your users started on UNIX

by teaching them the standard key¬

board commands and ten special com¬

mands. In the TEN/PLUS environment,

that is enough to perform most common

tasks and to invoke any application. As

they gain experience, your users can em¬

ploy more powerful TEN/PLUS commands

and all UNIX commands.

Easier to Use

The procedure for using TEN/PLUS is

simple: point at data with a cursor and then

use a TEN/PLUS command. If your users

need some prompting, they can ask for a

menu. If they are confused, they can ask

for a HELP message. If they are processing

several files, they can open a window on

each file.

Easier to Support

The TEN/PLUS environment eliminates

the errors your users make when different

applications require different sets of com¬

mands. Designed around a full-screen editor,

TEN/PLUS allows users to manipulate all

data with the text editing commands that

they use most often. This means that users

can use already familiar techniques to pro¬

cess both text and data. In addition, the

TEN/PLUS system provides self-explana¬

tory error messages.

Here’s another way to reduce support costs:

adopt TEN/PLUS as a standard user envi¬

ronment on a variety of computers—from

personal computers to mainframes. Then

provide TEN/PLUS to all kinds of users:

clerks, managers, and engineers. A common

user environment means your computer

staff will have fewer products to support.

Easier to Network

We’re porting the TEN/PLUS environment

to most versions of UNIX and to VMS.

We’ll help you port it to other systems.

To link systems runningour software, we’re

offering electronic messaging (INmail) and

a network manager (INnet) as TEN/PLUS

options. These packages are already a part

of IX/37(), the IBM mainframe UNIX sys¬

tem, and are available as an option on

PC/IX, the IBM UNIX system for PCs.

Thus, your TEN/PLUS system can readily

participate in a network with IX/370 and

PC/IX.

Easier to Expand

We’re also offering a set of development

tools that helps expand the TEN/PLUS

environment. One kit provides your pro¬

grammers with utilities and languages for

defining and using screen forms, a user-

friendly interface to the C compiler, and

subroutine libraries. Another kit provides

forms design and programming capabilities

for your end users.

Call today for more information about the

TEN/PLUS environment: (213) 453-UNIX.

Software Tools for System Builders.

INTERACTIVE
SYSTEMS CORPORATION

2401 Colorado Ave., 3rd Floor
Santa Monica, CA 90404

TWX 910-343-6255; Telex 18-2030
Telephone (213) 453-UNIX

THN/PLUS. INmail. INnet. and INtcnn arc trademarks of INTHRACTIVE SysiemN Corporation. UNIX is a trademark of AT&T Bell Laboratories.

IBM is a registered trademark of International Business Machines Corporation. VM.S is a trademark of Digital Equipment Corporation

Circle No. 300 on Inquiry Card

U THE MONTHIY REPORT

ment automation (requiring

only low-end packages) and de¬
sign automation (where high-end
specs are necessary). The least

expensive bundle, selling for

$5750, comes with a 68010 CPU,
1 MB of on-board RAM, a bit¬
mapped display interface, four
slots, and HP-IB, RS-232-C, and

HP-HIL (human-interface link)
interfaces. The design automa¬
tion bundle, selling for $27,725,
comes with a 68020 CPU, a
68881 floating point processor, 2

MB of RAM, high resolution color
graphics screen (1024 x 768 pixel
board), eight additional slots, and

the same interfaces as with the

68010. The customer is also al¬

lowed to spend as much as
$55,000 on the high-end of the

components scale. HP-UX can be

run on all models.
It will be interesting to see how

t he Scries 300 alters the composi-
tion of the HP 9000 family. Con¬
sidered an upgrade of the Series

200, the 300 could become popu¬
lar and make some of the 200

models (except the 216 and 236,

which are desktops) obsolete. The
Scries 500 has multiprocessor
capabilities, so one may consider
software providing Network File
Transfer service between the 300

and 500. Series 300 and 500
systems are also source-code
compatible.

HP is making it clear that it
intends to offer competition in the

workstation market. Last March
it announced an agreement with

Cericor, Inc., a small, CAE soft¬

ware tools developer based in Salt

Lake City, to integrate Cericor’s
CDA 5000 software packages into
HP’s logic design products. Then,
in July, HP acquired an 11 per¬

cent equity interest in Cericor.
According to William G. Parzy-
bok, HP vice president and gener¬

al manager of the Design Systems
Group, “Cericor’s technology will
be a strong element in HP’s
overall CAE product strategies.”

Two companies, MassComp

and Tektronix, have come out
with package upgrades, Mass-
Comp for their own products and
Tektronix for IBM. MassComp

has two Performance Enhance¬
ment Packages (or PEPs—clever,
no?) which serve as field up¬
grades for both the MC-500 and

WorkStation-500 Series. PEP-
50 1 consists of a 16 MI Iz, 68020-
based CPU, 68881 floating point
co-processor, a 32-bit Memory
Interconnect Bus, and 2 MB of
memory incorporating 256 KB
memory chips; this package sells
for $7900. PEP-502 is PEP-501
plus a board-level floating point
processor in place of the 68881,
and sells for $12,900. Though
officially announced, the PEPs
won’t be available until “the first
half of 1986”.

The Tekstation AT, an IBM
PC-AT with added hardware and
software, is billed by Tektronix
as a “low cost addition” to their
6000 Series of graphics work¬
stations. Released through
Tektronix’s wholly-owned sub¬
sidiary, CAE Systems, Inc.,
the Tekstation AT incorporates

a NS32016 co-processor, CAE
2000 design software, and like all
machines in the 6000 Series,
runs under UTek, a 4.2BSD-Sys-
tem V.2 hybrid version of UNIX.
This AT concurrently supports

PC-DOS and can perform the
standard tasks of a PC, but un¬
der UTek can function through
networking software as a work-

EQN examples

lim (tanxH^* = 1
X —»ir/2

Great-looking TROFF output
from low-cost laser printer!
■ TEXTWARE now offers DWB ■

For several years, Textware has been licensing TPLUSt software to process
the output of TROFF and ditroff for a wide variety of phototypesetters, laser
printers, etc. Now we are pleased to announce the availability of Documenter’s
Workbench! with all our packages. All TPLUS users may now benefit from this
current TROFF offering, with even greater power and flexibility.

Many organizations are now getting maximum benefit from the HP LaserJet,
using our TPLUS/LJ software. The low-cost LaserJet is a remarkable value on
its own—8 page per minute output speed, 300 dot per inch resolution, and

typesetter-quality fonts. TPLUS gives you access to all
this and more from your own system. Wc support all the
characters and accents needed by troff and eqn; in
addition, special characters (©; logos too) can be sup¬
plied or generated to meet specific requirements. Our
precise handling of rules and boxes allows you to take
full advantage of tbl for forms, charts, etc.

While even LaserJet output is not in the same class as the best phototype, it is
certainly well suited to documentation and a broad range of other applications.
When you do have a need for phototypeset images, TPLUS and the LaserJet will
save you time and money. Preview mode lets you proof all aspects of your docu¬
ments conveniently, in-house, before sending out for phototypesetting (from our
UNI*TEXT service). Cross-device proofing is a standard feature of TPLUS.

The HP LaserJet printer is not only inexpensive—it is an exceptional value!
Want proof? This entire ad was set in position using TPLUS on the LaserJet!
t TPLUS is a trademark of Textware Inti. t Documenter’s Workbench is a trademark of AT&T

Also available for* further information, please write or call.

• AM 5810/6900 & 6400, APS 6 & /i6,
CG 8400 & 8600, Mergenthaler 202

• Xerox 4045, 2700/3700 & 8700/9700
• BBN, Sun, 6620 & 'PC’ CRTs

• Diablo, Qume & NEC LQPs
• C Itoh & Epson dot-matrix
Yea, TPLUS will support the new LJ.

01+0

sin(x) *>i

□ TEXTWARE
INTERNATIONAL

POBoxU Harvard Square Telephone:
Cambridge, MA 02238 (617) UNI-TEXT

Circle No. 280 on Inquiry Card

14 UNIX REVIEW SEPTEMBER 1985

“CrystalWiten...
was the best and most logical

choice for us." Cari Laird Gray
System Administration
Healtfi Science Center
University of Texas

"Thank goodness we placed the order!
We are all very impressed with the
product. We were thrilled when we dis¬
covered how easy it was, yet it had all the
functions we needed and didn’t insult our
experienced word processor operators."

fectly at home in the multi-user environ¬
ment In fact Syntactics’ newest product
the Crystal'" Document Management System,
is designed to integrate UNIX word
processing into office automation sys¬
tems of tomorrow

CrystalWriter word processing takes
unsurpassed advantage of UNIX™ It’s
faster and it’s easier to use, and it’s per-

CrystalWriter is the next generation of
UNIX word processing software.

"The first software to go through AT&T’s
certification testing in just one pass!”
AT&T Information Systems
Distributor and Publisher of CrystalWriter

"A truly superior package."
UNIX/WORLD Magazine

When it comes to UNIX word processing
software, make the same choice AT&T
UNIX/WORLD Magazine, and the
University of Texas made.

For more information on CrystalWriter,
call (408) 727-6400 (within California);
(800) 626-6400 (outside California); or
write: Syntactics Corporation

3333 Bowers Avenue, Suite 145
Santa Clara, CA 95054.

See us at UNIX EXPO, New York, Booth #127

CrystalMiter
_The Word Processor of Choice for UNIX ”'

^ SYNTACTICS*
Circle No. 247 on Inouirv Card

- UNIX is a trademark of AT & T Bell Laboratories.
-CrystalWriter and SYNTACTICS are registered trademarks of

SYNTACTICS Corporation.

-Crystal is a trademark of SYNTACTICS Corporation.

CrystalWriter is now available on the AT&T UNIX PC 7300,3B2,3B5,3B20; DEC VAX 750 & 780; NCR Tower; Plexus;
Sun and many more. (The preceding are trademarked names.)

U THE MONTHLY REPORT

Station in team-engineering ef¬

forts. Such versatility comes with
a price tag—Tekstation AT starts
at $25,000. CAE Systems is an
IBM value-added dealer, and can
add a 10 MHz co-processor,
graphics card (for 720 x 704
pixels resolution), color display,

and increase disk storage to 280
MB and RAM to 4.5 MB. (CAE also
produces a 12-inch Liquid Crystal

Shutter (LCS) color display for the
AT; due out in October, it will sell

for $3700.) There is even a config¬
uration complete with file server
for about $40,000.

THE SUN ALSO RISES

As a public relations statement
will tell you, “Sun Microsystems
designs, manufactures, and mar¬
kets high-performance, general-

purpose workstations for tech¬

nical professionals". The work¬
station is Sun’s business, and
Sun is making it its business to
stay on top of the workstation
market. For this purpose, this
summer Sun has made notable

changes in its marketing and

product approach.

The first of these was across-
the-board price cuts on its sys¬

tems and memory. The 2 MB
diskless Sun-2/50 now lists for

$8900, down from $13,400; the
Sun-2/160 Color SunStation with
2 MB of available memory

was reduced from $36,400 to

$27,900; and the 71 MB drive
with 45 MB, 1/4-inch cartridge
tape option available for the Sun-

2/120, 130, and 160 pedestals
dropped from $10,900 to $7900.

The price for 1 MB of memory,

formerly $4100, is now $1500.
John Hime, director of product

marketing at Sun, points out two
main reasons for the price reduc¬

tions. “Component costs are way
down over the past year,” for one.

For another, though, as Hime
admits, “There is a general heat¬

ing up in the industry. Our com¬
petitors are continuing to offer
discounts below their list price,
and Sun needed to respond to

this”.

The second Sun move was to
announce two new products; the

Sun-2/130 SunStation, essential¬

ly a 2/160 without a color board
and with monochrome monitor
instead of color; as well as an
optional mass storage subsystem
for the Sun-2/50.

UNIX
SYSTEMS
UTILITY
SOFTWARE

UBACKUP
BACKUP, RESTORE, AND MEDIA MANAGEMENT

USECURE
SYSTEM SECURITY MANAGEMENT

SPR
PRINT SPOOLING AND BATCH JOB SCHEDULING

-SO YOU
CAN GET
ON WITH

SSL
FULL-SCREEN APPLICATION DEVELOPMENT

S-TELEX
TELEX COMMUNICATIONS MANAGEMENT

YOUR JOB. SSE
FULL-SCREEN TEXT EDITOR

For more information,
call or write.
(703)734-9844

These products are available for most UNIX or UNIX-derivative operating
systems, including System V, 4.2 BSD. 4.1 BSD, Xenix, Version 7. System III.
Uniplus, and others.

UNIX is a trademark of AT&T Bell Laboratories.

UNITECH
SOFTWARE INC. 8330OLD

Visit us at: UNIXEXPO Booth No. 264 FCC Booth No. 675

COURTHOUSE RD. SU1TE800 VIENNA, VIRGINIA 22180

16 UNIX REVIEW SEPTEMBER 1985 Circle No. 282 on Inquiry Card

Third. Sun announced up¬

grades to the 68020 processor for

its VME bus-based products, the

2/130 and the 2/160. This an¬
nouncement came in June, but
the upgrades, available to new
customers and past purchasers,
will begin shipping at year’s end.

There are two further points
on the general development of

workstations. The first concerns
buses. With the emphasis on the
68020, a 32-bit processor, there
is a tendency toward full 32-bit
buses. The VME bus is gaining
popularity, and for good reasons,
according to Sun’s John Hime:
it’s a full 32-bit bus, has a high
bandwidth (20 MB/second trans¬
mission), and add-on board ven¬
dors are really going for it.

The other trend in workstation

development regards the Motor¬
ola 68020 processor. It’s been
announced, it’s been touted, and
customers are looking forward to
using the two to threefold in¬
crease in power it can deliver.
Availability to customers, though,
is something that takes time.

Motorola’s Jeflf Nutt, Technical
Marketing Manager, and Jim Far¬
rell, Manager of Technical Com¬

munications, state that their
company was starting sample
quantities in June of 1984, is at
high production output at this
writing, and is projecting produc¬
tion of 50-70,000 of the pro¬

cessors this year. Workstation
manufacturers then have the ball
in their court: retesting software
(though programs running under
the 68010 should run as is under
the 68020), reprinting manuals,
and retraining salespeople. Far¬

rell also points out that many

companies are taking the oppor¬
tunity to enhance their operating
systems at the same time they
upgrade to the 68020, and such
enhancement can push the prod¬
uct shipping date back a bit
further. There are machines in¬
corporating the processor that

have completed these procedures
or soon will. The Altos 3068

started shipping in July, and HP
was offering six to eight weeks
delivery ARO for the 9000 Series
300 as of August 1. The 68020s to

be offered by many other manu¬

facturers should be in their hous¬

ings by Christmas.

David Chandler is the Associate
Editor of UNIX REVIEW. ■

Easier
THAN
1-2-3...

BUT DESIGNED
FOR LARGER
SYSTEMS

RO. BOX 2669
KIRKLAND, WA 98033-0712

I EFFECTIVE SOFTWARE FOR BUSINESS

;j4 f Tr i ■ , , ,H ' i!' i Vi i-' i ^1- V> ■!'• V.

In'H jt
.:Lr l.:*>; \ .\ 'i v L''V ‘--Vi i '

Ifs simple, C-CALC from DSD Corporation is

more flexible, has more functions, and is easier
to use than the best selling spreadsheet. We
made it that way for a very simple reason, you'll

get more work done and make better decisions
in less time. Thafs what makes you successful
whether you are planning for the future, fore¬
casting trends, or analyzing profits.

The most popular spreadsheets require a great
deal of time to get up and running. When we
created C-CALC we kept in mind that time is
your most important resource. Our On-Line
Help facilities, prompts and menus allow even
someone with minimal experience to see
meaningful results in very little time. Our built-
in training procedures let you pace your own
learning with tutorial topics that range from
basic to advanced. As you become more expe¬
rienced, C-CALC allows you to bypass
prompts and menus to save even more time.

So call DSD Corporation at (206) 822-2252.
C-CALC is currently available for: UNIX, VMS,
RSTS, RSX, IAS, P/OS, AOS, AOS/VS (Data
General), IBM CSOS.

C-CALC is a registered trademark of DSD Corporation. UNIX is a registered

trademark of Bell Labs. P/OS, RSTS and RSX are registered trademarks of

Digital Equipment Corporation. AOS and AOS/VS are registered trademarks

of Data General Corporation.

Circle No. 283 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 17

THE HUMAN
FACTO R=
Alternative prototyping languages

by Richard Morin

When all you have is
a hammer, everything
begins to look like a nail.

Unknown

UNIX shells and utilities are
very useful for fast prototyping.
Previous columns (May and Au¬
gust , 1985) have touted them and
given examples of their use. Part
of their power lies in the fact that
they are tuned to certain kinds of
applications. The same tuning
makes them less suitable for
other tasks, but a well equipped
workshop should maintain a vari¬
ety of tools. This column presents
a smorgasbord of prototyping lan¬
guages, some of which may well
belong in your toolbox.

Prototyping languages should
promote interactive development,
i)oth by quick turnaround and by
relatively loose structure. This

means that, though they may
have compilers, they should
also have interpreters and/or in-
(Tcmental compilers. The very
strong type checking and formal
spcH'ifications required by many
modern languages make them too
demanding for fluid program de-
veloj)ment. Verbosity is also a bad
thing in prototyping: a COBOL
interpreter would not qualify. Fi¬
nally. though speeialization is
often useful and even necessary,
a j)rototyping system easily can
become too finely tuned, turning
into more of a parameterized

utility than a true programming

language.
Nevertheless, there are a sur¬

prising number of languages
meeting the preceding criteria.
Kven restricting the search to
those that run on my Sun, I
have found implementations

of APL, BASIC, P^ORTII, Lisp,
MAGIC/L, Nial, and Prolog. This
list, while most assuredly in¬
complete, spans a wide range
ol jirogramming language phi¬
losophies. Each language has
its own peculiar way of looking
at data structure, syntax, and
other jirogramming questions.
This tends to suit certain lan¬
guages to certain applications, or
at least to certain kinds of users.
'I'he loiases are not accidental,
however, stemming directly from
the way in which computer lan¬
guages are developed.

Computer languages are in¬
vented mostly by individuals,

sometimes by small groups, and
occasionally by massive commit¬
tees. The number of people in¬
volved in the process has a direct
effect on the resulting product.
Languages invented by individ¬
uals lend to be very elegant, pure,
and cohesive, reflecting the in¬
tense elfort expended in their
creation. As larger groups enter
the process, either in the design
phase or as users, the language
trades some of its purity for
practical but inelegant additions.
Massive committees seem to pro¬
duce massive languages such as
Ada and PL/I. Prototyping lan¬
guages are no exception to this
trend, as the following descrip¬
tions will show.

BASIC

BASIC (Beginner's All-purpose
Symbolic Instruction Code) was
invented in (he mid-’60s by Drs.
John Kemeny and Thomas Kurtz
of Dartmouth College. Designed
as an instructional tool, it has a
simple algebraic syntax much
like Fortran. This simplicity, and
the ease of implementing BASIC
interpreters, have made the
language extraordinarily popular
with amateur programmers, and
almost ubiquitous on small com¬
puter systems. Unfortunately,
this same simplicity has necessi¬
tated a plethora of changes

18 UNIX REVIEW SEPTEMBER 1985

YOU CHOOSE:
Terminal Emulation Mode

MLINK CU UUCP

Menu-driven Interface Yes
Expert/brief Command Mode Yes Yes
Extensive Help Facility Yes
Directory-based Autodialing Yes
Automatic Logon Yes Yes
Programmable Function Keys Yes
Multiple Modem Support Yes Yes

File Transfer Mode

Error Checking Protocol Yes Yes
Wildcard File Transfers Yes Yes
File Transfer Lists Yes Yes
XMODEM Protocol Support Yes
Compatible with Non-Unix Systems Yes

Command Language

Conditional Instructions Yes
User Variables Yes
Labels Yes
Fast Interpreted Object Code Yes
Program Run Yes
Subroutines Yes
Arithmetic and String Instructions Yes
Debugger Yes

Miscellaneous

Electronic Mail Yes Yes
Unattended Scheduling Yes Yes
Expandable Interface Yes
CP/M, MS/DOS Versions Available Yes

MLINK
The choice is easy. Our MLINK Data Communications System is the most powerful and
flexible telecommunications software you can buy for your Unix^system. And it’s easy
to use. MLINK comes complete with all of the features listed above, a clear and com¬
prehensive 275-page manual, and 21 applications scripts which show you how our
unique script language satisfies the most demanding requirements.

Unix System V BSD 4.2 MS-DOS
Unix System III Xenix CP/M
Unix Version 7 VM/CMS and more.

choose the best. Choose MLINK.

Altos Data General IBM
Arrete DEC Onyx
AT&T Kaypro Plexus
Compac] Honeywell and more.

MLINK is idocil for VARs tind applicalioo builders. Please call or write for information.

Corporate Microsystems, Inc. P.O. Box 277, Etna. NH 03750 (603) 448-5193

Ml INK IS .I 11,idem.Ilk ol (oi poi.ilc Mu i()s\ stems. Im Iniv is .1 ti.idem.ii k nl MM |{i‘ll I .iboi at ones. lUM is .1 legist err'd ti.idem.iik ot IHM C oip. MS-I)()S ,ind Xenix .iic

ti.ideni.iiks ot Mi(losolt (oip. C I* M is ,1 legisleied ti.idem.ii k ol I)igit.il Kese.in h.

Circle IMo. 281 on Inquiry Card

U THE HUMAN FACTOR

to BASIC, with virtually no

standardization.
It lias also made BASIC an

object of scorn for professional
programmers, who ridicule its

limited control and data struc¬
tures, lack of modularity, and
unimpressive performance. For¬

tunately. many of these problems
are being addressed. Compiled
BASIC can be quite efficient:
extensions allow for modern lan¬
guage features, and standardiza¬

tion eilorts are underway. In the
meanwhile, [3ASIC devotees at
least can gloat about the enor¬
mous quantities of public domain

software available to them.

APL AND NIAL

AFL and Nial (“Nee-al”) are
characterized by the use of arrays
as their fundamental data struc¬
ture. While other languages
have arrays, these languages use
them, allowing them to be manip¬
ulated as easily as scalars. Both
languages support nested, het¬
erogeneous arrays, allowing ele¬
ments to be of any type, including

arrays. AFL and Nial have opera¬
tors that are roughly equivalent to
the built-in functions found in C
and F'ortran. Since the operators
work on arrays as well as scalars,
however, their power is much

greater.
AFL (A Frogramming Lan¬

guage) was invented by Dr.
Kenneth E. Iverson of IBM in the
early '60s. Often characterized as
a “write-only" language, AFL
makes C look verbose. The most
famous features of the language,
in fact, are its terseness and the
plethora of special characters it
uses. These are closely related—
the special characters actually
serve as operators in AFL. The
AFL character set is thus a mix¬
ture of Roman. Greek, and math¬
ematical symbols mapped onto a
standard keyboard. The growth of
AFL has been severely hampered
by the need for special display

and printing devices. With the
advent of bitmapped displays and
intelligent printers, AFL may get

a second chance for glory.
Nial (Nested Interaetive Array

Language) was developed in the

The very strong type

checking and formal

specifications required

by many modern

languages make them

too demanding for

fluid program

development.

late ’70s by Dr. Michael A. Jen¬
kins of Queen's University and
Dr. Trenchard More, Jr. of IBM.
Based on array theory, as devel¬
oped by Dr. More in the late
'60s, it has been implemented as
a commercial product named
Q'Nial. Nial uses operators much
like AFL. but they are written as
alphanumeric tokens. In addi¬
tion, Nial is able to embed its
operators in data structures, of¬
fering Lisp-like capabilities.

Nial advocates argue that it is a
more complete language than
AFL, and is therefore more pow¬
erful and eonsistent. This consis¬
tency. they say, allows Nial pro¬
grams to be transformed and
analyzed formally in ways that
are impossible for other lan¬
guages. The syntax, in any case,
is a hybrid, looking a bit like a
mixture of AFL and C. This is due
to the fact that Nial operators can
be "applied" to values, "com¬
posed" with other operators, and

generalized by built-in "trans¬
formers”. This allows Nial opera¬
tors to function on the almost
limitless variations of data struc¬

tures allowed by the nested het¬

erogeneous array format.
Don’t expect blinding efficien¬

cy from either AFL or Nial, since
they are typically (though not
always) implemented as inter¬

preters. Instead, think of them
when your problem has a strong
mathematical or statistical fla¬

vor, and consider using Nial for AI
applications. Most programming
languages treat arrays as places

to store things, and only allow

work to be performed on the
things themselves. If this part of
Von Neumann’s legacy is cramp¬
ing your style, consider trying one
of these more mathematically
oriented languages.

FORTH AND MAGIC/L

FORTH and MAGIC/L (“mag¬
ical”) are similar in several re¬
spects. The principal difference
is that MAGIC/L has dropped
FORTH'S RFN (Reverse Folish
Notation) syntax in favor of
a more conventional algebraic
style. Both languages are imple¬
mented as incremental compil¬
ers, giving them nearly the speed
of conventional compiled code,
and most of the convenience and
flexibility of an interpreter. While
both languages run well under
UNIX, they can be used without
it. and often are. Finally, the
languages show similar facility
for dealing interactively with

hardware devices.
FORTH was developed by Dr.

Charles Moore in the early ’70s.
Its principal data abstraction is

the stack, but it supports almost
anything else on a roll-your-own
basis. The RFN syntax is the
principal target of FORTH critics.
They note that it requires one to
remain aware of the state of the
stack at all times, and that it
makes reading F'ORTH code quite

20 UNIX REVIEW SEPTEMBER 1985

difficult. FORTH advocates argue
that awareness of the stack en¬
courages efficient use of the ma¬

chine, and that the simplicity of
the syntax allows it to be very

general and powerful. In any

case, FORTH is flexible enough to
allow any determined user the
chance to modify its appearance.

MAGIC/L, invented by Arnold

Fpstein and Jeffrey D. Morris of
Loki Engineering, is a well devel¬
oped alternative solution, howev¬
er. It is incrementally compiled,
handles machine dependencies
beautifully, and looks surprising¬
ly normal, rather like simplified C
or Pascal. Although MAGIC/L
only supports singly-subscripted
arrays, its “record" construct
allows the definition of fairly
arbitrary data structures.

LISP AND PROLOG

Lisp (List Processing) and Pro¬
log differ radically from each
other, but they are both heavily
used by the AI community. Their
strongest similarity is perhaps
their facility for symbol manipu¬

lation. This facility suits them for
working with knowledge (facts,
rules, relationships, and the like)
as opposed to mere data. Since AI
coding is done in a highly interac¬
tive and exploratory manner,
both languages have a strong
prototyping flavor. Additionally,
both languages use lists as their
basic data structure, though the
details differ widely.

Lisp was invented by Dr. John
McCarthy and his associates in
the late '50s, but it has under¬
gone drastic changes since that
time. Although Lisp was strictly
an interpretive language initially,
implementations now generally

compile or interpret as desired.

Doth programs and data are
stored by Lisp as binary trees,
and recursion is the main vehicle

for traversing the trees. This
simple and consistent structure
has proven to be remarkably

flexible, allowing the grafting of a
wide range of programming para¬
digms onto Lisp. Lisp programs
can. for instance, contain “intel¬
ligent" data structures or gener¬

ate expressions that are then

evaluated. AI programmers com¬
monly create problem-oriented
dialects to assist them in their
work, much as UNIX devotees

create tools such as sed and
make.

Prolog was developed in the
'70s by assorted computer scien¬
tists in Marseille (Battani, et al.),
with help from Warsaw (Kluz-
niak, et al.), Edinburgh (Pereira,
et al.), and elsewhere. It differs

from conventional programming
languages in that its semantics
are declarative rather than im¬
perative. One thus programs Pro-

a set of facts and
rules and asking it to prove a
given assertion. Prolog scans its
knowledge base, attempting to
find a combination of facts and

rules that will provide the re¬
quested proof. Part of the interest
in Prolog stems from the possi¬

bility that hardware could be
built to perform these searches in
parallel, providing an opportun¬
ity for efFicient large scale
multiprocessors.

IN SUMMARY

For every class of programming
application, there is likely to be
someone who will get fed up with
the existing languages and build
another. Alternatively, a lan¬
guage may be developed simply to
experiment with ideas or to ex¬
press a philosophical point. Most
of these fade into (often well
deserved) obscurity, being too
specific, insufficiently robust, or
simply too similar to other avail¬

able tools. Occasionally, however,
a group of followers will develop
around a language. Software is
produced, books and articles are
written, and a subculture devel¬
ops. wSomc of the languages de¬

scribed above have withstood this
kind of scrutiny: others arc still
under the gun. All of them, how¬
ever, have attracted users and
advocates, and hence deserve
consideration by adventurous

programmers.

Mail for Mr. Morin can be setit
(o Canta Forda Conipnter Lab.
PO Box 1488. Pacifica. CA
94044.

Richard Morin is an independent
computer consultant specializing
in I he design, development, and
documentation of software for engi¬
neering, scientific, and operating
systems applications. He operates
Canta Forda Computer Lab in Paci¬
fica, CA. m

m

FRANZ
THE FIRST NAME IN

LISP

■

Franz LISP from Franz
Inc. is currently available
under UNIX and VIMS.
Nom ' with Flavors and
Com imon LISP compatibil-
ity. Franz sets the stan-
dard for LISP.

Fran z Inc.
1141 Harbor Bay Parkway
Alameda, California 94501
(4151 > 769-5656

UNIX is a irademark of Boll Labs VMS is a
iradcmark of Digital Equipment Corporatioti

■ ■ ■ ■ ■ ■

Circle No. 278 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 21

THE RIGHT
LANGUAGE

FOR THE JOB
An overview of the potpourri of UNIX options

by Joel McCormack

UNIX and C arc intertwined
symbionts that teed otl' one an-
other's success. The fact that
UNIX is written in C has made the
system portable and extensible,
which has helped make it popu¬

lar: the C software base generated
by UNIX in turn has spawned C
comj:)ilers for other operating
systems.

1'hus, a discussion of program¬
ming languages available on
UNIX must revolve around C.
Why is C so dominant, and
how have other languages filled

nic hes not addressed by C?
'Phis article describes how C

allowc'd UNIX to be written in the

first place, and explains why C
remains the UNIX programming
language of choice. The evalua¬
tions of f'ortran, Pascal, Ada, and
Lisj) (hat follow emphasize the
advantages these languages have
over C, and the weaknesses that
prevent them from displacing C.

'fhc shell, which supplies the
glue for sticking programs togeth-
c'r. and make, which assists with
tlu’ generation and maintenance
ol systems of programs, are then
briefly described.

Finally, this paper delineates

C's deficiencies, and proposes a
possible replacement: Modula-2.
Offering the power and efiiciency
of C with none of the flaws,
Modula-2 may ultimately emerge

as the language to surpass C as a
tool for writing and maintaining
software systems.

C

fhough the original UNIX op¬
erating system was written in
assembly language, its authors
realized that further progress re-
cjuired a more powerful notation,
'fheir experiences with the lan¬
guages BCPL and 13 led Dennis
Ritchie to include multiple primi¬

tive types and a method of com-
i:)Osing types in the successor
language he called “C".

C was intended only as a more
convenient notation than assem¬
bly: efficiency and access to low-
level facilities had priority over all
else. Hence C does not allow the
assignment of one array to an¬
other. and types are not included
for compile-time checking, but
merely allow the code generator
to emit the proper instructions.

The language succeeds as a
step up from assembly program¬

ming. C can do nearly everything
that assembly can, at a modest
cost in efficiency. The Berkeley
4.2 release contains less than
1300 lines of assembly code in
the kernel, while I estimate code

written in C is no more than 40-
80 percent larger than hand¬
written assembly code. C also
supports (he creation of libraries
of routines. A program can be
broken into pieces that are devel¬
oped and compiled independent¬
ly: general-purpose routines need
not be incorporated textually into
a program, but only linked to it.

C has two unique advantages
over all other languages in the
UNIX environment: it was the
first language implemented, and
remains the only system pro¬
gramming language available on
all versions of UNIX. As a result,
programmers often modify exist¬
ing C programs rather than start
Irom scratch in a language better
suited to the task. And the bene¬
fits of a large software base now
extend beyond UNIX: systems
software companies, particularly
in the microprocessor world, offer

a variety of C compilers with
’UNIX-compatible" libraries.

22 UNIX REVIEW SEPTEMBER 1985

:
A

.
-K

.

UNIX REVIEW SEPTEMBER 1985 23

LANGUAGE OVERVIEW

Considering the importance of
C to UNIX, the portable C compil¬
er is surprisingly mediocre. Its
speed is not exceptional (1400
lines per minute on a VAX
11 /780). The compiler tends to be
easily confused by errors, often
making it easier to fix one mis¬
take at a time in preference to
wading through a deluge of spur¬
ious complaints. The code the
compiler generates also leaves
much room for improvement.

To compete successfully with
C, other languages must offer
something C does not. This strong
suit may be anything from a large
engineering software base (as
with Fortran), to language fea¬
tures not found in C (as with the
strong typing of Pascal and Mo¬
dula-2), to a view of a world alien
to C (as with Lisp). The following
sections describe some of these
languages that have found a
home in the UNIX environment.

FORTRAN

Fortran’s designers intended
that the language would permit
algorithms to be written in an
algebraic manner, and that the
housekeeping operations of array
indexing, flow control, and
input/output would be simplified.
The most important goal, though,
was efficiency; John Backus ex¬
pected Fortran programs to run at
least half as fast as hand-coded
assembly. The original compiler
performed such impressive opti¬
mizations that it set the standard
for Fortran compilers for years to
come.

Today, Fortran remains the
primary language for scientific
and engineering programming.
Fortran benefited greatly from
being the first popular high-level
language: there are vast libraries
of Fortran that can be ported
between machines as easily as C
programs can be ported to other
operating systems. And even
though Fortran’s only type struc-

Modula-2 may

ultimately emerge as

the language to

surpass C as a tool for

writing and

maintaining software

systems.

ture is the array and its control
structures are anything but mod¬
ern, it offers better support for
arrays and real number types
than C. Arrays can have variable
bounds, and support for both
single and double-precision real
and complex numbers is offered.

Fortran is well integrated into
Berkeley UNIX. It can call C
routines (and vice-versa), the For¬
tran 77 standard is implemented,
and two pre-processors, RATFOR
and EFL, convert extended ver¬
sions of Fortran into standard
Fortran. But the Fortran compiler
is less error-free than the C
compiler, and the code it gener¬
ates is unimpressive; two of the
four persons who reviewed this
article related stories of program¬
ming groups using VMS rather
than UNIX just to gain access to
the VMS Fortran compiler. Better
Fortran compilers may appear as
UNIX is implemented on the new
generation of high-speed num¬
ber-crunching machines, but we
must wait to see.

PASCAL

Niklaus Wirth created Pascal
in order to teach the clear expres¬
sion of data composition and

structured control flow. The type
system of Pascal is based on the
ideas of another professor, C. A.R.
Hoare, who in turn found Pascal
coherent enough to produce an
axiomatic definition. The lan¬
guage has since spread well be¬
yond its academic roots.

Types in Pascal correspond
to familiar mathematic abstrac¬
tions, and are designed to help
prevent common programming
errors. Thus, pointers in Pascal
refer to a specific type; the values
that are assigned to scalars can
be limited using subrange decla¬
rations; set operations are includ¬
ed; and arrays have declared
lower and upper bounds. Most
importantly, different types can¬
not be mixed freely.

Pascal is a far safer language
than C to teach to beginning
students. In C, something as
mundane as a copy of one array to
another may destroy all of mem¬
ory if the loop terminating condi¬
tion is written incorrectly. In
Pascal, the same action is written
either as a single assignment
statement, or as a loop in which
indices into the source and desti¬
nation arrays are checked to
ensure that they are within the
bounds of the arrays.

Many seasoned programmers
also appreciate the safety afford¬
ed by the strict type-checking of
Pascal. Compared with C, Pascal
programs that compile are more
likely to be bug-free; if something
goes wrong at runtime, a Pascal
program is more likely to com¬
plain nicely than to behave in a
mysterious way. Range-checking,
case-checking, variant-checking,
and nil pointer-checking enable
Pascal to report an error in the
vicinity of its source, rather than
in a spot of the program many
instructions later.

Designed for use by student
programmers, the Berkeley Pas¬
cal compiler handles compile¬
time errors better than any other

24 UNIX REVIEW SEPTEMBER 1985

V

compiler on UNIX. By using an
extended version of the yacc
parser generator, the Pascal com¬
piler gives extremely accurate
messages, and rarely gets so con¬
fused that it cannot continue
parsing. It also emits a variety of
warnings, detecting when a vari¬
able is used but never assigned, or
when a variable is declared but
never used.

Berkeley Pascal’s extension for
separate compilation offers a sim¬
ple but effective version-checking
scheme: the compiler computes a
hash value for each .h file that’s
included and stores this value in
the resulting object file; when the
compiler links several object files
into an executable program, it
ensures that all object files have
the same hash value recorded for
a given .h file. Berkeley Pascal
offers a few other extensions that
alleviate Pascal’s problems by
blank-filling constant strings to
the right size, and by providing
I/O procedures for file opening,
closing, and random-access. Like
Fortran, Pascal can call C and
vice-versa.

For all that, Pascal is still a
weak contender against C. The
Berkeley compiler compiles at
950 lines-per-minute, and under
800 1pm if runtime checks are
generated. What’s more, it gener¬
ates poor code. And finally,
whereas “standard” C is general¬
ly useful, standard Pascal often
is not. Pascal’s type-checking
simply does not outweigh these
disadvantages.

ADA

The Department of Defense,
realizing that languages in use by
the military were inadequate for
reliably producing large software
projects, commissioned four

competing groups to design a
language. This language was
to support many advanced pro¬
gramming concepts, including
type-checking, modularity, and

high-level support for low-level
tasks. Eventually, the Defense
Department decided on one of the
proposals: after many revisions it
became the language Ada.

The result is a powerful but
frustrating language. Ada has

two major problems; a "kitchen
sink" feeling that stems from
committee decisions about lan¬
guage constructs; and features
that interact poorly and are hard
to compile. Because implementa¬
tions of Ada were not developed
concurrently with the language
specification, there was little
practical feedback about design
decisions.

As a result, Ada is not popular.
It takes a while to learn to use it
well, and compilers for Ada are
large and slow. Ada on UNIX is
used largely for education and to
cross-compile programs for mili¬
tary computers.

LISP

Lisp has a view of the world
quite unlike C’s. Originally devel¬
oped in the late 1950s and early
’60s, Lisp was designed for
the manipulation of symbolic ex¬
pressions rather than numbers.
Whereas Fortran is oriented
toward a concrete realization
of functions. Lisp is one step
removed—it is often used to
perform operations (like differ¬
entiation) on functions them¬
selves. All operations, including
arithmetic, are written in a func¬
tional notation based on Alonzo
Church’s lambda calculus.

A fluke in Lisp’s design elimi¬
nates the boundary between data
and code, allowing the language
to execute the very lists it creates.
Lisp is historically significant for
another reason: it pioneered auto¬
matic garbage collection. These

qualities have made the language
the mainstay of the artificial
intelligence community.

Lisp’s longevity means that
thousands of programs have

svs
FORTRAN
The SVS FORTRAIVI-77
language is now available on
an expanded family of CPUs. It

fully supports;

• Full Ansi Standard

A/IC68000
• GSA Certifiable

• Many Language Extensions
derived from our large

user community
• Symbolic Debugger

MS32000
• Optimizing Code

Generation
• High Speed Compilation
• Very Large Applications

• Integrated Hardware
Floating

Point Interfaces:
MC68881, SKY, IMS3208I,

and Custom

MC68020
• Complete User
Documentation

• Available since 1981

SVS has been a major
OEM supplier of compilers
since 1979.

For further information about
these and other quality OEM
compilers call 415/549-0535.

Silicon Valley Software, Inc

I00I1 N. Foothill Blvd., Suite 111
Cupertino, CA 95014

Circle No. 272 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 25

of it, ULTRIX**

Which now has led to the latest
related advance. To the tool that

makes ULTRIX software more use-
ful than ever.

EPIX. The microcomputer that’s

SO handy it’s already becdming the
tool of the trade.

Like any good tool, EPIX makes jobs

easier. Because it not only comes

packed with all the ULTRIX soft¬
ware, but supports everything else

in the world that’s QBUS compati¬

ble. Meaning there’s a raft of helpful

hardware readily available too.

And since programmers need to
count on their tools, we’ve built

EPIX with the most reliable indus¬
try-standard innards. From its UNIX

time-sharing system to its J-11 super

microprocessor.

To make EPIX exceptionally use¬
ful, we’ve also made sure users
won’t outgrow it. By giving it up to
369Mb of formatted high-speed
Winchester capacity. And a main
memory of up to 4Mb.

So you can make it fit the job
now, and it’ll still be able to grow as
the work expands.

What’s more, EPIX comes from a
company that tries to be every bit
as helpful as its products. A com¬
pany more interested in what you
want than what it’s got.

To test that statement, you can
simply use another tool of the trade.

The telephone.

SUPERMICRO FROM
THE WORLD OF DEC

Call:
1-800-UNBOUND Toll Free
In California 714-895-6205
TWX: 510 100 1075

Unbound Inc.
15239 Springdale St.
Huntington Beach, CA 92649

Circle No. 254 on Inquiry C;ird

•Trademark of Bell Laboratories

Trademark of Digital Equipment Corp.

TrT jT3
HiH MlSIlllIlffiR lillllfIM

been written in it. Many of these
are included in Berkeley UNIX’s
Franz Lisp, along with some op¬
tions and support packages that
make the porting of other Lisp
software from various dialects
feasible. Franz Lisp programs can
be either interpreted or compiled,
and can call C, Pascal, and For¬
tran routines. Franz Lisp also
includes a nice debugger and a
user-extensible editor.

On the downside, P'ranz Lisp is
oriented toward teletype interac¬
tions, and executes slowly. Lisp
on UNIX is nice to have if you
require UNIX for other things, but
doesn’t quite satisfy the serious
Lisp developer. Lisp may find
more acceptance on UNIX as
UNIX is ported to new, high-speed
machines.

THE SHELL

Part of the UNIX philosophy is
that programs should be small
and single-minded: programmers
can then hook them together (via
pipes) to accomplish more com¬
plex tasks. The various shells
provide a simple, flexible mecha¬
nism for wiring programs togeth¬
er. Two popular versions are the
Bourne shell (sh) and the C shell
(csh).

Both sh and csh are inter¬
active. A single command line
can pass string arguments to
programs, redirect input or out¬
put to a file, pipe several pro¬
grams together with the output of
one going to the input of the next,
and expand wild-card filenames.

Both shells are also used for
programming more complex pat¬
terns of program invocation. If
statements and loop statements
test to see if a program or se¬
quence of programs have termi¬
nated normally, and the case
statement tests string arguments
and variables using the same
pattern-matching conventions as
filename expansion does. The
output of a program can even be

used as a statement of the shell
program.

The use of shell programs (or
scripts) fall into two general
classes: one is to customize exist¬
ing commands. Such scripts are
but one or two lines, and add
only a fixed set of arguments to
those already provided, or pipe
several programs together into
one superprogram.

The other use of scripts re¬
sembles conventional programs.
Such scripts use variables and
control constructs, and range
from half a page to several pages.
These programs typically inter¬
pret the arguments passed to
them, invoke different programs
based on the arguments, and/or
perform some operation on each
file in a directory.

The use of scripts is transpar¬
ent to the user. A UNIX command
is an executable object file gener¬
ated from C, Pascal, Fortran,
Modula-2, or Lisp: or a script
written in any of the shells. All
are invoked and passed argu¬
ments in the same way. This
uniformity and the easy access
to pipes provides a meta-pro¬
gramming environment superior
to nearly all other operating
systems.

THE MAKE PROGRAM

Because of make, it is possible
to maintain large programs on
UNIX (including UNIX itselfj. The
make program uses two kinds of
rules. The first is a generic set of
rules for deriving one type of file
from another: for example, .o
object files are created from .c
source files by calling the C
compiler cc. The second is a
sjDecific set of rules stating depen¬
dencies between a group of files:
for example, an object file de¬
pends on the main .c source file
that is compiled to create it, as
well as all .h header files that are
included. A specific rule may
include a derivation command

svs
Pascal
The svs Pascal language is
now available on an
expanded family of CPUs. It
fully supports:

• Ansi Standard

MC68000
• IEEE Floating Point, both
Single and Double Precision

• Full Featured with
most UCSD Extensions

• Interlinkable with SVS "C"
and SVS FORTRAIM

• Symbolic Debugger

IMS32000
• Optimizing Code

Generation
• High Speed Compilation

• System Programming and
Very Large Applications
• Modular Programming

• Secure Separate Compilation

MC68020
• Complete User
Documentation

• Available since 1980

SVS has been a major
OEM supplier of compilers
since 1979.

For further Information about
these and other quality OEM
compile call ^;ffi^9-0535.

Silicon Valley Software, Inc
toon N. Foothill Blvd., Suite 111
Cupertino, CA 95014

Circle No. 272 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 27

SI
LANGUAGE OVERVIEW

that overrides the generic rule.

When told to ensure that a file
is up-to-date, make looks at the

dependency rule for the file. If the
specified file was last created or
modified more recently than all
the files it depends on, make tells

you all is well. Otherwise, make
regenerates the file (after regener¬
ating any files the specified file
depends on).

The make program is merely

convenient when used to specify
the same set of compiler flags
across all compilations; it is es¬
sential when the files depend on
each other, since a change to one

file may require recompilation
of several others. The make
program thus provides version¬
checking and automatic recompi¬

lation to languages that lack this
capability.

THE PROBLEMS WITH C

UNIX is no longer a small
operating system with a few text¬

processing utilities. I suggest that
the very language that made
UNIX possible is now slowing its

further progress. Not all problems

can be reduced to small programs

connected via pipes, and C is an
inferior programming language
for large, multi-author software

systems.
First, the notation itself is not

error-resistant. Frequent C pro¬
gramming mistakes involve one-

character mishaps, like substi¬

tuting = for = = , & for &&, I for
11 ,or putting a semicolon after a
for loop header. C programmers
waste time tracking down sim¬
ple typographical mistakes that
other languages detect at compile
time.

Second, the type composition
rules of C are contorted for all but
the most simple structures: decla¬
rations use both prefix and post¬
fix notation with an arbitrary
precedence hierarchy. The C dec¬
laration for a variable that is a
function for returning a pointer to

I suggest that the very
language that made

UNIX possible Is now
slowing Its further

progress.

an array of pointers to characters
is:

char ♦U(*f)())[MAXSTRIN6S];

Third, the lack of type-check¬
ing is, I hazard, the largest source
of productivity loss for C program¬
mers. The portable C compiler
generates warnings for many of
the legal—but usually wrong—
constructs that C allows, thereby

encouraging the use of type casts,
but many mistakes go unnoticed.
The use of the type int to repre¬
sent integer, character, and bool¬

ean types often leads to programs

that manage to compile, but com¬

pute the wrong result.
The deficiency of type-check¬

ing extends to procedures as well.
Parameter types are not part of
the procedure header declaration
but are only included in the actual

procedure definition, so .h files do
not contain type information.
Worse yet, when a procedure
accepts a variable number of

parameters, the type of param¬
eters that are expected can be
determined only by reading the
code inside the procedure.

Further, C’s parameter-pass¬
ing convention invites disaster. In

languages like Pascal and Mo¬
dula-2, the method of passing a
parameter—by value or by ad¬
dress—is specified once in the
procedure heading, and the com¬
piler ensures that the correct code

is generated thereafter. C forces

the programmer to remember and
specify the appropriate method at

each call to the procedure.
When these points are raised to

staunch C defenders, their reply
is “Well, you can always run lint
to do all that do-gooder type¬
checking stuff.” This answer
invariably comes from program¬
mers who don’t use lint them¬
selves: those who do know it is a

weak substitute for type-check¬
ing at best, and an irritation at
worst.

On one hand, many common
errors slip by lint with nary a

peep...after all, it may be wrong,

but it is valid C. For example, lint
does not complain about either of
the following statements [i and
Junk are int):

if (i = 0) |...|
junk = scant("yod". i);

On the other hand, lint often

acts like the boy who cried
“Wolf!” For example, since lint
can only check to see that you are
using a procedure consistently, it
complains at every call to a
procedure that takes a variable
number of parameters. You can
tell lint not to check certain
constructs, but this defeats the
very purpose of the program.
Even so, the bug list for lint in the
manual is a single sentence:
“There are some things you just
can’t get lint to shut up about.”

Fourth, with no subranges and
no type-checking, C is left with no

way to perform runtime check¬
ing. Range-checking in particular
is lacking: it is all too easy to
index past the end of an array and
destroy the variable(s) allocated
immediately following the array.
The behavior of a program subse¬
quent to such an event often leads
the hapless programmer down
many false paths before the
source of an error is finally
located.

28 UNIX REVIEW SEPTEMBER 1985

The lack of type-

checking Is, I hazard,

the largest source of

productivity loss for C

programmers.

Fifth, C is not as portable as its
proponents often maintain, sim¬
ply because it has not been pre¬
cisely defined. In their book
C: A Reference Manual, Samuel
Harbison and Guy Steele, Jr.
write: “The second source of
information on C is the C compil¬
ers themselves: you can write a C
program and see if it compiles
(and, if it does, what code is
generated).” This diversity ex¬
tends even to UNIX: the C compil¬
ers on 4.2BSD and AT&T System
V accept different languages.

Finally, C has no support for
modules in the modern sense of
the word, include and make
notwithstanding. True modular¬
ity provides version-checking, a
non-global name space for ex¬
ported objects, true separation of
specification from implementa¬
tion, and module initialization.

MODULA-2

Just as C eliminated many of
the errors endemic to assem¬
bly programming, new languages
eliminate many of the trivial (but
costly) errors endemic to C. One

such language, Modula-2, com¬
bines a type-secure module struc¬
ture with the low-level program-

ming capabilities of C and the
type-checking facilities of Pascal.

Moclula-2 IS the third in Nik-
laus Wirth’s line of strongly typed
languages. The first is Pascal,

which succeeded far beyond its

design goals. The second is
Modula-l, a small, experimental
language designed to investigate
modularity and concurrent pro¬
gramming. Modula-2 is a systems
programming language synthe¬
sized from Wirth’s experiences

with both of his earlier languages
and Mesa, a language developed
at Xerox PARC.

The most important structure
in Modula-2 is, appropriately
enough, the module. Modules
have two separately compiled
parts: a definition module,
which contains declarations of
constants, types, variables, and
procedure headings accessible to
client modules: and an imple¬
mentation module, which con¬
tains private declarations, code
for the procedures declared in the
definition module, and an initiali¬
zation section.

In C, a change to a .h file may
require that all clients be re¬
compiled—but the responsibility
falls to the programmer, who is
armed only with make: in Mo¬
dula-2, strict version-checking
forces consistency. This checking
can be implemented with simple
time-stamps, which require re¬
compilation of client modules any
time a definition module is
changed, or the checking can be
implemented with more complex
schemes that require recompila¬
tion only when non-upward com¬
patible changes are made. Ver¬
sion control in Modula-2 does not
depend on the careful (but possi¬
bly erroneous) construction and
maintenance of dependency lists
in a make file, but is automatic
and failsafe.

In C, if two different .h files
declare the same identifier, a
client program cannot include

both files; in Modula-2, a client
may import names from a module

in either qualified or unqualified
mode. References to qualified
identifiers are prefixed by the

svs
BASIC-PLUS
The SVS BASIC-PLUS language

is now available on an

expanded family of CPUs. It
fully supports:

• DEC BASIC-PLUS Dialect

MC68000
• Integer, String and IEEE

Double Precision Variables
• Vector and Matrix

Arithmetic
• String Arithmetic

• Extended I/O, Including
Print Using, Get and Put
• Multi-lined Functions
• Renumber, Ti'ace, and

Chain Commands

IMS32000
• Very Fast Interpreter and

Source Code Protection using
quasi-compiled internal form

• Interactive

MC68020
• Complete User
Documentation

• Available since 1982

SVS has been a major
OEM supplier of compilers
since 1979.

For further information about
these and other quality OEM
compilers call 415/549-OSS.

Silicon Valley Software, Inc

10011 N. Foothill Blvd.. Suite III
Cupertino, CA 95014

Circle No. 272 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 29

Sorry, Counten, this is one computer
vfhere you won't find VADS”!

Although the VERDK Ada® Development
System(VADS) won’t be rehosted on Charles Babbage’s
Difference Engine, it is being hosted on and taigeted for
a variety of computer systems and embedded system
architectures.

The Department of Defense (DoD) has now validated
VADS for a growing number of computers and operating
systems including the DEC/VAX™ series under UNIX™
4.2 BSD and ULTRK™, and for the Sun-2™ Worksta¬
tion. Future product releases will include Host Develop¬
ment Systems for VAXA/MS™ and UNDC System V, and
cross-taigeted systems for 4 major architectures...
Motorola 68000 and Intel “86” families, the NS32032,
and MIDSTD-1750A.

VADS is the fastest and friendliest Ada development

system available. It is specifically designed for large-scale
Ada program development in a production environment.

VADS features a complete run-time system, plus an
interactive, screen-oriented, fully symbolic debugger that
lets you easily pinpoint errors. Unexcelled diagnostics and
Ada library utilities quickly manage, manipulate and
display program library information, dramatically shorten¬
ing development times.

VADS from VERDK. The finest, fastest and most
cost-effective Ada Development System on the market to¬
day. The biggest breakthrough in programming since Ada
herself.

For full information, call James Zimpfer, Director of
Sales and Marketing Support, Ada Products Division, at
(703) 378-7600.

VERDIK*
14130 Sullyfield Circle, Chantilly, VA 22021

Ada Ls a registered trademark of the U.S. Government. Ada Joint Pr()gram Office.

VAX, VMS and ULTRIX are trademarks of the Digital Equipment Corporation
UNIX is a trademark of Bell l^^ratories Circl0 No* 255 on Inquiry Cfird

Sun-2 is a trademark of Sun Microsystems. Inc.

VERDK and VADS are trademarks of Verdix Corporation

name of the module in which
they are declared (for example,
ModuleName.obJectName), free¬
ing the module designer from

futile attempts to provide objects

with unique names.
In C, changing the implemen¬

tation of one of the “modules”
used by a main program may
require changing and recompiling

the program: in Modula-2, chang¬
ing an implementation module
requires recompiling only that
module. Further, Modula-2 defi¬
nition modules change less fre¬
quently than C .h files, due to
Modula-2’s support for abstract

data types. The structure of an
abstract data type is not known
outside of the module, and the
only operations allowable on the
type are those provided by the
module. Unlike C, changing the
structure of such a type does not
require recompiling modules that
use the type.

In C, .h files that are otherwise
irrelevant to a client program
must be included by the client so
that it can call the initialization

procedure for each “module”; in
Modula-2, initialization sections
arc called automatically by the
client, which ensures that lower-
level modules are initialized be¬
fore the modules that depend on
them.

Modula-2 has all the advan¬
tages of strict typing, but it adds
the flexibility of C’s type casting
and pointer arithmetic. Modula-2
provides both a range-checked
and an unchecked type conver¬
sion for those few occasions when
you need to violate type rules.
Modula-2 also provides the type
ADDRESS, which can be used in
arithmetic expressions and is
compatible with any pointer type.

Though Modula-2 is based on

Pascal, it retains few of the flaws
of its ancestor. The article
“Modula-2 - a Solution to Pascal’s
FVoblems” by Sumner and
Cleaves in the September 1983

issue of SIGPLAN shows how
Modula-2 systematically address¬
es the problems of Pascal as
outlined by Brian Kernighan in

the Bell Laboratories report,
“Why Pascal Is Not My Favorite
Language”.

Unlike the Berkeley Pascal
compiler, the DEC Modula-2 com¬
piler on UNIX generates excellent

code. With no optimizations per¬
formed, it emits object code that
runs as fast or faster than opti¬
mized code from the Berkeley C
compiler: in some benchmarks,
Modula-2 runs in 70 percent of
the time of the equivalent C

program. With optimization,

Moclula-2 benchmarks run in 90
percent to as little as 33 percent
of the time used by C. Even if all
runtime checking is turned on,

the optimized Modula-2 code is
usually faster than C, which, of
course, has no checking.

The Modula-2 compiler is fast,
too. An internal version compiles
about 1500 1pm when not gener¬

ating runtime checks, and 1300
1pm when generating checks.

Faster versions are expected as
optimizations are applied to the
compiler itself. (The compiler is
compiled with runtime checks—
the advantages of these checks
outweigh the speed advantage
gained by omitting them.)

Admittedly, Modula-2 is not
perfect. For starters, it lacks C’s
structured initializers, Fortran’s
dynamic arrays and complex and
double-precision types, and Ada’s
exception-handling mechanisms.
Availability is limited: the DEC
compiler is available to universi¬
ties on 4.2BSD and Ultrix, and

can only be had by those commer¬
cial organizations using Ultrix.

There are currently no text¬
books on Modula-2, so the lan¬

guage is not yet widely taught.
The UNIX compiler is now used
more for systems programming
research at universities than it is
for instruction. This situation

SVS “C"
The SVS "C" language Is now
available on an expanded
family of CPUs. It fully
supports:

• Common "C" dialects

MC68000
• Ideal for Applications

Development and Rehosting
Programs for Improved

Efficiency
• Emphasis on Floating Point

• Single Precision Option
• Integrated Hardware

Floating
Point Interfaces:

MC6888I, SKY. IMS32081
• Interlinkable with

SVS Pascal
and SVS FORTRAN

• Symbolic Debugger

NS32000
• Optimizing Code

Generation
• High Speed Compilation,

No Assembler Passes
• Free of AT&T Licensing

MC68020
• Complete User
Documentation

• Available since 1982

SVS has been a major
OEM supplier of compilers
since 1979.

For further information about
these and other quality OEM
compilers call 415/549-0535.

Silicon Valley Software, Inc
10011 N. Foothill Blvd., Suite 111
Cupertino, CA 95014

Circle No. 272 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 31

LANGUAGE OVERVIEW

will change, though; I know of at
least two textbooks to be pub¬
lished in the next year, and as
the number of implementations
on microcomputers grows, Mo¬

dula-2 should experience the

same sort of popularity explosion

that launched Pascal.
In fact, many development and

research organizations are al¬
ready using Modula-2. At DEC,
all new code being written at
the Western Research Laboratory

and Western Software Laboratory
is in Modula-2, and DEC’S Soft¬

ware Research Center is using an
extended version of Modula-2.
Other Modula-2 users include

Bank of America, Bendix, Float¬

ing Point Systems, Ford, McDon-

nell-Douglas CSC, Phillips, Signe-
tics, and Tektronix. (Ironically,
some of these companies chose

Modula-2 over Ada on the recom¬
mendation of their defense-relat¬

ed subsidiaries.)
For all that, Modula-2 faces an

uphill battle in the UNIX commu¬
nity. C is well entrenched, and

programmers tend to be a conser¬

vative lot, often shunning the
new because it is unfamiliar. But
unlike any of the other languages
that have preceded it, Modula-2 is
designed to compete with C on its
own turf—systems software.

Modula-2 is more readable than

C, more maintainable than C, and

enforces consistency during sys¬
tem integration. Better still, a
compiler that runs faster and

generates better code than cc is

available. I hope we will one day
see copies of Software Tools in
Modala-2 by Kernighan and
Plaugher on every UNIX program¬

mer’s bookshelf.

Joel McCormack co-authored the
Z80I8080 UCSD Pascal interpreter

while attending UCSD, where he

obtained a Masters of Science

degree. He then designed and micro-
coded a 16-bit bit-slice board to
execute UCSD Pascal for NCR, for
whom he also wrote the high-level
microcode language compiler. Com¬
piling Pascal at 10,000 Ipm hope¬

lessly spoiled him. Later, at Volition

Systems, Mr. McCormack co-auth¬

ored the Modula-2 compiler, and

eventually found himself President.
After stock battles shut down Voli¬

tion, dec's Western Software Labo¬
ratory lured him away from San
Diego's beaches to work on Mike
Powell's Modula-2 compiler. He now
programs in C only under protest. ■

ACCESS
METHODS
INCORPORATED

ATTENTION:
UNIX SPECIALISTS
We have the most challenging and
sought after consulting assignments in the
UNIX* industry:

■ Kernel Work
■ Distributed UNIX "
■ Networks (x.25 and LAN's)
■ Graphics
■ Real-Time Systems
■ Languages, Compilers, and Translators
■ Hardware and Microcoding
■ C Applications Programming

See us at UNIX Expo, Booth 235
Drop your business card in our fishbowl for
a chance at a free Video Recorder.

ask for us AMI
590 Valley Rd. ■ Upper Montclair, NJ. 07043

(201)744-9126
■

314 West 56th St. ■ New York, N.Y 10019
(212) 245-8114

call collect

•UNIX IS a trademark of AT&T Bell Laboratories jf

Circle No. 277 on Inquiry Card

Communications Software for
Micros
Minis

WANG Mainframes IBM
.Data General^^^\^ XSBSDQSD_

—-^MS-DOS

XuMIX

Any computer with BLAST can talk to any other computer with BLAST, the
universal file transfer software linking many different computers, operating
systems, and networks. No add-on boards; use any asynchronous modems

or direct-connect for fast, error-free data transfer, even via noisy phone
lines, satellites. LANS, and packet networks.

$250/micros $495-895/minis $2495 up/mainframes

Communications Research Group 1-80024BLAST

8939 Jefferson Hwy Baton Rouge. LA 70809 504-923-0888

Circle No. 276 on Inquiry Card

32 UNIX REVIEW SEPTEMBER 1985

...puts your
IBM Series/I^ahead
of the pack!
SERIX is the high performance CMI version of AT&T’s
UNIX^^ System V operating system with Berkeley 4.1
enhancements ported to the IBM Series/1
minicomputer.

SERIX transforms your Series/1 into an even more
powerful, flexible, and convenient processor for general
data processing, office automation, communications,
and process control. Its advantages are outstanding:

Reduced software costs
Long term growth path
• Software is highly portable
• Provides access to a large, growing software base

More power from the Series/1
• Optimizing C compiler uses native code features
• All code reentrant
• Dynamic memory allocation without fixed partitions

increased programmer productivity
• Large set of utilities
• Hierarchical file structure
• Pipes, forks, semaphores, and shared data segments

Other CMI Series/1 software
• RM/COBOL^^
• UNIFY^^ database management system
• ViewComp^^ spreadsheet
• vi visual editor
• EDX^^- to -SERIX^^ conversion kit

CMI Corporation Is a Master Value-added Remarketer
of IBM Serles/1 equipment. Leasing and other financial
arrangements are available.
Contact us for further information.

Photoorapher - Michael Zagaris • UNIX is a trademark of Bell Laboratories
• SERIX is a trademark of CMI Corporation • SERIX was developed exclusively
for CMI by COSI. • IBM. Series/1. and EDX are trademarks of International
Business Machines Corporation • UNIFY is a trademark of North American
Technology. Inc. • RM/COBOL is a trademark of Ryan-McFarland Corporation
• ViewComp is a trademark of Unicorp Software. Inc.

CMI Q
> Torchmark Company

CMI Corporation

SERIX Marketing
2600 Telegraph
Bloomfield Hills, Ml 48303-2026
(313)456-0000

TWX: 810-232-1667
Telex: 499-4100 ANS: CMI CORR BDHS

Member CDLA Member ASCD

Circle No. 296 on Inquiry Card

The Firebreathers continue on the cutting
edge of high performance computers.

The most powerful line of computer sys¬
tems made. Gould
PowerModes™ and
CONCEPT/32S*

Any way you
slice it they beat
the VAX.™

Our main¬
frame PN9000 and
CONCEPT 32/97
are up to twice as fast as the VAX 8600.

And even though the mid-range
PN6000 and CONCEPT 32/67 are 30-50%
smaller than the VAX 11/780, they're still up
to three times more powerful.

More power for a slice of the price.
Despite their superior power, our mid¬

range models cost 40% less than the VAX
11/780. Our mainframes cost about 30%
less than the new VAX 8600, The bottom
line is more power for less money.

Operating environments that are a cut
above the rest.

There's also a choice of system soft¬
ware to consider, Gould’s unique UTX/32®
is the first operating system to combine
UNIX* System V with Berkeley BSD 4.2. So
it allows you to access virtually any com¬
mand format you want whenever you want.

And in real-time environments, Gould’s
MPX/32'“ operating system offers perfor¬
mance that's unmatched in the industry,
as well.

Delivery that’s right on the mark.
Unlike the VAX ^600. that has up

to a 12 month wait fbr delivery, when you

order either a Gould PowerNode or a
CONCEPT/32 system, they’ll be shipped
within 90 daysARO.

You can also be sure with Gould you’re
getting a computer that’s backed by years
of experience - the kind of experience we
used to develop the first 32-bit real-time
computer.

If you need more information or just
have a few questions, give us a call at
1-800-327-9716.

See for yourself why V/\X no longer
cuts it. Go with a Gould computer and ax
the VAX.
CONCEPT/32 and UTX/32 are registered trademarks and PowerNode
and MPX/32 are trademarks of Gould Inc. VAX is a trademark of Digital
Equipment Corp. UNIX is a trademark of AT&T Bell Labs.

■> GOULD

ll^ woi

i Electronics

Only Gould computers have a
big enough edgeito ax the VIVX.

Circle No. 297 on Inquiry Card

Unto every purpose there is a language

I by Steve Johnson
I

Rarely have an operating system and a language
had such a symbiotic relationship as the one that
ties the UNIX system to the C language. While C re¬
mains dominant, many other languages also have
grown and flourished in the UNIX environment.
Some of these are standard, but others are unique to
the UNIX system. The “UNIX philosophy” of small,
well crafted tools has encouraged mini-languages to
be developed for every purpose. Also, some interest¬
ing tools have been popularized on the UNIX system
that make the construction of new languages

lUuslraLiim by 11 von Kim

SEPTEMBER 1985 35

THE HOUSE
OF MANY
TONGUES

LANGUAGE TOOLS

The user brave enough to do text

processing will quickly discover

languages galore.

somewhat easier than on other systems.

This article will quickly tour some of the non-
conventional languages found in daily use on UNIX

systems, and then discuss the tools that have
brought them into being. Finally, prospects for the
future will be outlined.

QUICK TOUR

Taking an extreme and biased view, practically
every program that interacts with a user has a
command language. An experienced user of UNIX
probably knows a large number of different lan¬
guages. Some of these are small, others large. Some
are regular, allowing a few simple elements to be
combined in a large number of useful ways. Others

are idiomatic, revealing little rhyme or reason. Let's
take a look at a few of the languages available to the
UNIX guru.

The shell. The text interpreted by the shell forms

a language, with operators such as and “ I ”,

grouping symbols such as ”(” and statements

such as for and do, and expressions containing
such symbols as and ”?”, as well as more
conventional names. Although the shell has a
reasonably regular syntax, its semantics are very
irregular: arguments may look the same from
command to command, but generally they have
different meanings. While this terrifies many new

users, some have argued that the shell's command

language is in fact well suited to its purpose (Harris,
Marion, “UNIX Command Language”, Proceedings
of the 10th Anniversary Usenix Conference, June
1985, pp 343-348). Moreover, Jean Wood of DEC
recently observed, tongue in cheek, that the com¬
mand language has served as a force for the
internationalization of UNIX systems since UNIX
commands clearly aren’t English. AT&T proposed a
command syntax standard a couple of years ago
{Proposed UNIX Command Language Syntax,
UniForum Conference, January 1984) in an attempt

to regularize the semantics, as well as the syntax of

commands.
Text Processing. The user brave enough to do

text processing will quickly discover languages

galore. The granddaddy of them' all is troff, with .
roots reaching back to days far before UNIX, and a

syntax and semantics that bespeak its original

implementation in assembler. People usually pro¬
cess text using one or another macro package on top
of troff, in effect defining other languages. Want
equations, tables, pictures, graphs? Other special¬
ized languages are available to do what you need.

The ed editor and friends. Text editors provide
another rich source of input languages. The input

language for ed allows for statements such as a, s,
and q, and expressions such as:

/a.*e.*i.*o.*u/

Moreover, ed has been extended to provide a

language for editing text streams, sed, and for use

as a visual editor, vi. Regular expressions from it
even surface in programs such as grep.

The awk language. The awk language can be
used to handle character strings, pattern matches,

and simple arithmetic. Recently, awk has been
extended by allowing functions to be defined and
invoked, making it look even more like a true
programming language. Although it has been used
for many years as a simple and powerful substitute
for general database systems (especially for small
applications), awk also is general enough that it has
been used to write compilers (albeit slow ones!).

The C language. Of course, C is commonly used
on the UNIX system. Enough said.

Conventional Languages. Various versions of
UNIX offer one or more conventional languages in
addition to C. On many UNIX systems, one can
either find or buy Fortran, Pascal, Lisp, Modula, and
several dialects of COBOL and BASIC. On some
forward-looking systems, one can find Prolog, Ada,
and C+ + . And don't forget that even simple
languages like be also can be quite useful.

TOOLS

How might the development and support of these
languages be made easy? Obviously, by using more
languages! The UNIX system supports a number of
language-building languages as well as several tools
that facilitate work on large projects—like the
production of a language.

The earliest of these tools is yacc, one of the first
application programs to run under UNIX (it’s even
older than C!). The yacc facility takes a description
of a language (more formally, a LALR(l) grammar)
and builds a C program called a parser that reads

and structures the language, and detects and
recovers from input errors.

As an example of how this might work, a
language implementor might wish to restructure an

36 UNIX REVIEW SEPTEMBER 1985

input language to allow integer expressions wherev¬

er only simple integers had been legal previously.
This might be done as simply as adding the yacc

rule:
integer : integer V integer

I $$ = $1 + $3: I
to the existing yacc file. The first line can be

interpreted as saying: “Wherever it is legal to input

an integer, it is also legal to input an integer, a plus
sign, and another integer.” The second line, which
looks a bit like a fragment of C code, says that the
value of the integer on the left side ($$) is the sum of

the values of the first and third components of the
right side of the rule. Thus, users will be able to say
”2 + 2” where they only could have said “four”

before.

It is possible, though, that the plus operator is

used in some way in the modified input language
that conflicts with its use in integer expressions.
The yacc facility will detect and flag those places
where it is unable to decide which rule is to be ap¬
plied. The language implementor then can elimi¬
nate such ambiguities before releasing the language

to users. The yacc facility will also detect rules that
can never be reached and other error conditions.

In addition to integers, yacc can handle more

complicated values like pointers and structures. It is
straightforward to generate parse trees or other data
structures from input using yacc actions so that
further processing can be done.

In most uses, yacc is concerned with the complex
structure of the program. Lower level details are
usually handled by another program known as a
lexical analyzer. Lexical analyzers are typically
used to recognize comments, blanks, constants,

identifiers, multi-character operators, and the like.

The individual characters in the input are collected

and processed, and the parser is told what they
represent. Lexical analyzers also keep track of file
and line numbers, so that error messages can
describe the location of discovered mistakes.

One tool, lex, can be used to build lexical
analyzers. As with other UNIX tools, input to lex
consists of patterns and actions. In this case, the
patterns describe chunks of input text called

tokens. As a token described by a pattern is

recognized, input characters that match it are

collected and the action specified by the user is

performed. A sample lex line reads as follows:

This could be used to recognize the reserved word
while in a programming language. When the word
is located, the action returns a value to the parser

The JniX comniand language style

was a reaction to the chatty nature

of some other operating systems.

indicating that the key
A more complex lex lin

[0-9]+

word has been encountered,
e like:

yylval = atoi jytext); return(INTEGER):

Inputs for yacc and

might be used to recognize integer constants in a

programming language The pattern matches one or
more digits between 0 and 9 and specifies an action
that is considerably more complex than the one in
the first example. This action calls the library
routine atoi on the arra y, yytext, where the integer
has been collected. The resulting value is stored in a
special variable, yylval, where yacc can pick it up if
desired. The action then returns to the parser an in¬
dication that an integer has been seen.

Beyond lex and yacc, language developers also
enjoy many of the other advantages of the UNIX

system. In particular, make and the shell are nearly
essential to the production of high-quality lan¬

guages. When programs such as yacc and lex,
which produce other urograms, are regularly in¬
voked, a tool like mak(^ is essential to ensure that
changes are reflected accurately in the recompila¬
tion process. This is piarticularly important since
languages are often us(^d by many users. Shell files
that automatically do regression testing can help

ensure high quality by checking to see that the

latest version of a language has not broken any key
applications.

lex follow what is known as
the pattern/action format, which is also used, with
modifications, by awk
guages have rules that

pair tends to stand alon

iJ lo reuse lire tend to reuse the yac<h
others more readily tha

others. Pattern/action

and make. All these lan-

are evaluated, and actions
that take place when the rules are satisfied. What
makes the languages interesting, though, is that the

; on the patterns, rather than

on more conventional control flow statements such

as if and while statements. Each pattern/action

le, and have meaning outside

of the immediate context in which it appears. This
may account for the observation that programmers

I J Ul I lex, and make hies from
n the programs produced by

languages appear to require a

Ciiiitinucd to Poffe .9.9

UNIX ijtEVIEW SEPTEMBER 1985 37

38 UNIX REVIEW SEPTEMBER 1985 Illustration by J. Kelly Davies

THE SOURCE CODE
MAINTENANCE

CHALLENGE
Tracking an ever-changing picture

by Marc J. Rochkind

Xhrough development and first
release, a new software product
undergoes five distinct phases:
specification, design, implemen¬
tation, testing, and packaging.
Only those products that are
successful, though, enter yet an¬
other phase; maintenance. If a
product is very successful, its

maintenance phase will last
many times longer than its var¬
ious development phases. F^or ex¬
ample, the UNIX operating sys¬

tem entered its maintenance
phase about 10 years ago, and it
looks as though it will be main¬
tained for many years to come.

Unlike the maintenance of tan¬
gible products (such as auto¬
mobiles), software maintenance
does not connote “repair or re¬
placement due to wear and tear”.
Rather, to maintain software
means to correct its design flaws

• yea (discovered months or

initial release) and mak
ever modifications are
to adapt the software
purposes or new enviro
Automobiles are rarely
to turn them into, say,
trucks, but analogous

transformations happen
time.

Maintenance of tangihjl
nets is routinely done
actual, end user level; ni
turing plans typically
involved. By contrast,
maintenance generally
tail changes to manuf^
plans, not delivered ex
programs. Users are therji
ed by replacing their exe^
with new ones: this is ar
to replacing an automobi|l
its ashtrays get full.

Because source code

rs after

e what-
cessary

to new
iments.

modified
pickup

.4oftware
all the

e prod-
at the

anufac-
are not

software
qoes en-

cturing
Rentable

updat-
i'utables
a logons
e when

mainte-

UNIX REVIEW SEPTEMBER 1985 39

SOURCE MAINTENANCE

nance is complicated by several
factors not present during de¬
velopment, a seemingly simple
change that might take only
hours or days during develop¬

ment could take weeks or months
during maintenance. I'll describe
three major complicating factors.

COMPLICATIONS

The first, and most serious,
complication is that original de¬
signs generally are partitioned
into modules (“divide and con¬
quer") according to specifications

made at the time. These specifi¬

cations change during mainte¬

nance, but modifications still are
done within the bounds of the

original partitions because

maintenance programmers pre¬
fer tweaking code to totally reor¬
ganizing systems. The result is
that software partitions, which
are by far the most important
property of any design, become
less and less appropriate as time

goes on.
A second factor is that systems

get larger and fancier as features

and more exotic performance al¬

gorithms are added. This is usual¬
ly matched by growth in the

maintenance stafT, but because of
turnover, the experience of that

staff may be declining. The effect

of this is that the quality of
the programming decreases with
time. Inappropriate partitioning

accelerates this decay.
It seems obvious that at some

point in the life of a software
product a new set of specifica¬
tions should be drafted, a new
partitioning be created, and a
new system be developed from
scratch. In practice, though, this
is almost never done. There are

several reasons for this, not the
least of which is that personnel
may be unavailable. A product
that has been out for some time is
always more complex than the
original, so the Job of specifying
and designing its replacement

will be that much harder. The
development of a replacement
may take two or three years, but
by that time maintenance on the

old product will have changed the
specifications even more. Finally,

the emotional upheaval caused
by a completely new replacement
may be more than customers can
bear (consider new Coke vs. old

Coke).
The third factor is that the

presence of numerous versions of

Automobiles are rarely

modified to turn them

into, say, pickup trucks,

but analogous

software

transformations

happen all the time.

the various software modules,
each in different stages of devel¬
opment and release, makes the
task of manipulating source code

confusing, error prone, and ineffi¬
cient. Of the three complications
I’ve described, this is the only one

that has been satisfactorily han¬
dled in an automatic way. One
tool that does the job is called
the Source Code Control System
(SCCS), first implemented under
UNIX at Bell Laboratories in
1974. SCCS became an official
part of UNIX with System 111, and
it is now available with most
implementations of UNIX.

SCCS acts like a new member
of the maintenance team: the
librarian. The source code for
each module is stored in a special
file format under the protection of

SCCS. A module can be retrieved

for study, for compilation, or for

editing via the get command only.
After a module is edited, the
changes are entered formally via

the delta command. There are a

half-dozen or so other SCCS com¬
mands for changing access per¬
missions, for listing changes, and

for other administrative tasks.
When a module is first placed

under SCCS control, normally at
the end of development, it be¬
comes the base for a new SCCS
file. As changes are made, incre¬

ments are added to this base by

the delta command. These incre¬

ments are called deltas. The

programmer need not be con¬

cerned with the details of what

the delta has affected unless he or
she wants to. The delta command
compares old and new files in
their entirety and figures out for
itself what actually has been
changed.

With the get command, the
source code for a module can be
accessed at any delta. Effectively,
this is the same as actually stor¬
ing every version of every module
in a separate file. But because of
an encoding scheme used by get
and delta, the additional space
used to store the deltas is quite
small relative to what would be
required to save entire files.

Perhaps the key benefit of

SCCS is that it records descriptive
information about modules and
changes to them that goes beyond

what the UNIX file system itself
records. For each delta, SCCS
records who made the change
(login name), when it was made,
what source lines were changed,
and even why it was changed (the
programmer is prompted to enter
a descriptive phrase). Deltas are
assigned numbers designating a

release (1,2,...) and a level within
that release (1.1, 1.2, ...).

When a fix is made to a release,
programmers who access that
module at a later release are
notified about the change so that

40 UNIX REVIEW SEPTEMBER 1985

(hey can decide whether to in¬

clude it as is, make an alternate
fix, or skip it. This goes a long way
toward preventing a bug elimi¬

nated during one release from

creeping back into the next re¬

lease, a slip that’s all too common
when versions are managed

manually.

When sees was first deployed,
some managers got the idea that
information about deltas could
be used for producing program¬
mers' performance appraisals,
but, happily, this hasn’t caught
on. In fact, some programmers
make lots of deltas (one for each
time they invoke the editor), while
others make a delta only when
(hey are completely finished with
a set of modifications. There is
absolutely no correlation between

the number of deltas on a module
and the skill of the maintenance
programmer or the reliability of
that module. Indeed, given a
choice of modules in which to

ijnsert a modification, the clean¬

est, most readable module is the

one most likely to be changed.
An important reason for the

success of sees is that it is
philosophically neutral: it does
not impose a policy detailing
how a software product should be
maintained, but rather simply
helps each project—and some-
tjimes each individual—automate
according to the dictates of their
own policy. Actually, most pro¬

grammers who use sees never
execute get or delta directly.
Instead, they use shell proce¬

dures custom-designed especially

get
for t
ing

dure?
such
work

pilat
so

viewi

tratioir
tool
such
nexilji
its a

lows
do thi

on

e d

Ijieir project. Besides execut-
and delta, these proce-

may perform other tasks
as sending mail to a project
30ok login, kicking off com-

i3ns, generating reports, and

Thus, sees should be
not as a software adminis-

n system, but rather as a
I hat can assist in creating

a system. The enormous
lity of the UNIX shell and

isociated software tools al-
each project using SeeS to
ngs its own way.

Mere J. Rochkind invented the
Source Code Control System in
1972. tie is currently President of
Rochkind Software Corporation, of
Houloer, CO, which markets the

RID^ programming language.

use UNIX™ to put your ideas into ROM
68020 80286 Z80 64180 8051 6502 6809 8041 8048 8085 6800 6801 6805 68 HCll 1802 Z8 7000 3870

TM

★ well supported
★ well designed
★ well documented

8/16/32 Bit Macro Assemblers
Link Editor (overlays)
Debugging Aids
EPROM Utilities

★ Open System
★ User Configurable
★ UNIX-driven

WE WILL SUPPORT YOU ON OVER 20 UNIX-BASED CO
WITH THE FOLLOWING GUARANTEE

MPUTERS

Use UniWare for your project for 30 days. It will meet or exceed your
UniWare - in any way you want. Go to the limit. And if you're not more thai|i
shown you exceptional merit, send it back for a full refund. Only SDSI wi
broad guarantee. We support the chip you need on the system you want

Expectations. Test
satisfied that it's

I give you such a
Today.

Unix is a trademark of
AT&T Bell Laboratories

SOFTWARE DEVELOPMENT SYSTEMS, INC.
3110 Woodcreek Dr. • Downers Grove, Illinois 60515
U.S.: (312) 971-8170 England: Unit-C, Ltd. (0903) 205233

. with the FINEST Software Support Service In the business
UNIWARE is a trademark of
Software Development Systems, Inc.

Circle No. 273 on Inquiry Card

UNIX r?EVIEW SEPTEMBER 1985 41

Oj' the several hundred char¬
ter nieinbers of the UNIX com-
nninity, few are as well known
as St a Feldman. Long service at
AT&T Bell Labs and a sabbati¬
cal at UC Berkeley put him in
contact with almost all of the
system's early developers. His
strong opinions and brilliant
wit. meanwhile, have made
him a favored Usenix speaker.

Now District Research Man¬
ager of the Software Engineer¬
ing Research Group at Bell
Communications Research in
Morristown. NJ. Feldman has
also gained notoriety for his
work on compilers and lan¬
guage tools under UNIX. Among
the best known, of course, is
the Fortran 77 compiler he
developed (with Peter Wein¬
berger). In addition. Feldman
authored the EFL (Extended
Fortran Language) pre-proces¬
sor (which comipatriots claim
really stands for ''Even Feld-
maji Likes It") and make, the
powerful program development
tool that allows for the smooth
integration of changes.

Based on this evidence. UNIX
REVIEW felt that if one person
could provide insights into the
state of language technology.
Feldman would be the one.
Sure enough, when Dick Kar-
pinski. manager of UNIX ser¬
vices at UC San Francisco, con¬
ducted the interview, he found
no shortage of opinions.

REVIEW: You've probably had
occasion to consider the state
of compiler technology. Do
you think that advances are
necessary?

FELDMAN: That would appear
pretty clear in a large number of
directions. The compilers that
most of us use aren’t very good.
They’re slow, they don’t generate
very good code, they don’t give
especially good error diagnostics,
they don’t help you keep track of
large j)rograms, and they’re writ¬
ten in ways that are very hard to
understand. Almost everything
you can think of is wrong—apart.

STATE
OF

THE
ART

An interview with
Stu Feldman

g]

of course, from the fact that we do
use them and they do compile.

REVIEW: I didn't even hear you
mention bugs.

FELDMAN: 1 was beginning with

the assumption that we were
discussing compilers that actual¬
ly worked. There are several dif¬

ferent classes of bugs. The impor¬
tant compilers—that is, the ones

for pre-existing, old-fashioned
type languages like C, Fortran,
and you name it—have to com-
l)ile languages that have details
that don’t actually make sense.
So, the compilers often are writ¬

ten by people who have never
understood what they were sup¬

posed to do in the first place.

Sometimes there are bugs that

reflect this misunderstanding.

Then, of course, there are bugs
that exist simply because lan¬
guages are not easy to compile for.

It’s very clear that compilers
aren’t nearly so satisfactory as
they ought to be. If you read the
textbooks, it sounds like anybody
who has passed a junior-level
class in compiler construction

ought to be able to go out and
write a reasonable compiler. Un¬

fortunately, many of these people
actually do go out and try to write
one, which is a disaster.

REVIEW: Are new languages
necessary? To what end?

FELDMAN: Yes, they are neces¬
sary. They will show up contin¬
ually because they’re needed a) to
express new problems and b) to
represent new ways of looking at
old problems. Presumably, the
generation that will follow C (al¬
though it’s not clear who’s going
to win) will represent serious
changes in what the world thinks
it needs. To quote a friend, “The
language changes have been so
successful that we’ve come full
circle back to Simula.’’ This was
meant as a jocular statement, but
it reflects how concerns recycle
and how new ones enter consider-
alion. For this reason. I’m fairly
certain that languages will con¬
tinue to be constructed for very
good j)urposes. Of course most of

42 UNIX REVIEW SEPTEMBER 1985
Vhdtos h\ deor^c Studio Hd

the languages to come will be
losers, both in the evolutionary

sense and by measure against

any aesthetic standards.

REVIEW: Languages are sonie-
tinies very close to their prede¬
cessors. Take Algol-60 and Pas¬
cal. or Simula-67 and Modula-2,
for example. Are the differ¬

ences between these languages

large enough to notice?

FELDMAN: When seen from far
enough away, yes, they’re almost
identical languages. Seen close
up. the ditTerences are truly enor¬
mous, and these represent the
very different things that are
being accented. You can begin by
saying Algol-68 had everything,
which was one of its major prob¬

lems. PL/I was even more hideous
aesthetically because some form
of almost everything that any¬
body ever wanted was stuffed into
it. Other languages, incidentally,
are sometimes even worse.

The Pascals and the C's of this
world have succeeded because
they offered very strong “smaller-
is-better’’ reactions to the earlier
languages. They fit on tiny ma¬
chines fairly nicely.

REVIEW: Would the UNIX sys¬
tem hcwe been successful with¬
out C?

FELDMAN: Yes. I believe so. Re¬
member that there were UNIX

versions in assembler and B,

preceding C. A system like UNIX
requires a language like C to fly,
but something other than C itself
could have made UNIX a reason¬
able success.

I should say that I like C a lot,
so any comments I make should
be taken as the criticisms of a
happy user. C matches a model of
thought that says, “I really want
to be able to control what hap¬
pens on an ordinary computer,

often at a fairly detailed level.
Most of the time I want to talk at a
higher level, but 1 still want to
know (hat Pm programming a
comjDuter, not describing a math¬
ematical object.”

I have a definite model of the
machine C runs on. It’s a thing

^ would assume that by

now C has dug in

sufficiently deep that

we're going to have it

the rest of this

1 millennium at least.

cjontaining cells that hold arrows
and cells that hold letters—that
sort of thing. I picture myself
rpanipulating those cells. This is

very congenial view for me. It
also turns out to be quite easy to
map onto most of the hardware
we care about. This means that it
is easy to write a reasonably
efficient C program, and that it’s
relatively easy to understand a C
program that’s been written well.
The language occupies a middle
ground and matches the image
UNIX grew up with: it’s simple

and well suited to running on
happy little machines.

REVIEW: Do you think that the
c^ode in the UNIX kernel and the
yarious system utilities offer
Examples of well-written C
j^rograms?

FELDMAN: At this point I sus¬
pect it would be unreasonable to
s|ay that the kernel is an example
of well written C. It contains
e^xcellent C programs, but of ne¬
cessity they have been fiddled
vyith to fit performance con¬
straints and so forth. Because of
that. I suspect that system soft-
\yare is not the place to look for
elegant design no matter what
system is under discussion.

REVIEW: And yet, C is capable
o^f being used in that way.

FELDMAN: C is perfectly happy
\vdth being moderately abused.
My code almost never has gotos.
That’s a religion I sort of accept.
I’m suspicious whenever I see

gotos in other people’s software
and I certainly go out of my way to
avoid them in my own programs

because I find them irksome.
Then" are plenty of places, how¬
ever, where if you want to speed
things up a tiny bit and you really
know what you’re doing, gotos
can te appropriate. For that rea¬
son. I think you’d do better to look

into ordinary commands if you’re
looking for examples of reason¬
able style, simply because the
demands put on the commands
are n3t as strange. I’m not saying
that 1 he kernel is written badly:
it's just that the most interesting
parts are likely to contain
some obscure code that’s been
caref jlly thought out.

REVIEW: How long is C going to
be with us?

FELDMAN: I would assume that
by now^ C has dug in sufTiciently
deep that we’re going to have it
the rest of this millennium at
least. I also fully expect to be

getting computer mail on UNIX
systems five years from now.
UNIX and C models both have
turned out to be so satisfactory as

ways of thought that, given the
inertia, I can’t see either of them
disappearing during the next 15
years.

REVIEW: In the same way that
the Sholes {QWERTY! keyboard
has proved satisfactory for
most of the century?

FELDMAN: There are zillions of
arguments about why there is
almoist nothing dumber than
QWfCRTY, but luckily I haven’t
had to learn another keyboard.

REVIEW: What are the limits of

language technology?

FELDMAN: Tire technologies of
compilers have lots of limitations

because we just don’t understand
how [o solve all kinds of impor¬
tant problems. However, the fac¬
tor that will determine both the
succ'tss and limitations of a lan¬
guage' is what surrounds it. An
environment oflers lots of tools,
mechanisms, and customs.

Le ;'s hark back to Fortran for a

UNIX ItEVIEW SEPTEMBER 1985 43

moment. All manner of assump¬
tions are made implicitly about
what is and isn’t good about

P'ortran. People assume that do
loops are good and will be opti¬
mized. Therefore you contort your
programs to use them, and hope

you don’t have to debug them
later. You make assumptions
about certain things in the com¬
piler technology based on what
has been handed down to you
through folklore. In this instance,
the reality is that many compilers

aren’t very good at do loops.

Certainly mine isn’t.
Take the UNIX environment

surrounding C. As a user, I expect
(here to be many interesting tools
that can operate on the interme¬
diate product of the C compiler—
cither assembler intermediate for

special cases or the .o object
format. All that together with

enormously useful libraries con¬

stitutes the world of the C pro¬
gram. The C language itself
comes with at least an I/O library,
and, in reality, we tend to assume
all kinds of other goodies. That’s
part of the world that has to be
included in any consideration of

language technology.

REVIEW: How are the language
tools used under UNIX?

FELDMAN: One answer is that
they aren’t used enough. UNIX is
not a single-language system in

any way. Most programs written
in low-level language are written
in C. This is indeed true. But it is
possible on your standard UNIX
system for Pascal, Fortran, and C
procedures to call each other
happily. I consider that a major
property that the language tools
should reflect. Secondly, a much
more popular tool language than
C is the shell, all three or four
major versions of it. Many more
j)rograms in some sense get writ¬
ten in the shell than in C.

REVIEW: The volume of code
may not be as great.

People simply don't

realize how much they

use language-based

tools in the UNIX

environment.

FELDMAN: No, but every time
someone types an interesting se¬
quence in the shell, they’re pro¬
gramming. Many other tools are

truly languages, like awk, sed,
and certainly grep. These un¬
questionably have language
components, and the people who
use these components all the
time grumble furiously. Certainly
things like eqn, the equation
typesetter, or the table formatter
tbl. are languages unto them¬
selves—although they repre¬
sent very opposite technologies.
There’s no question but that
they’re language-based tools: eqn
actually has a yacc grammar. The
tbl formatter doesn’t, though,
because it has a very trivial
format. Then there istroff, which

is another language. That’s why
eqn and tbl were written—to
cover up the incredible syntax
and horrors of troff. All of them,
though, represent uses of lan¬
guage technology. F'irst, the con¬
struction of these tools very much
reflects an approach to breaking
things up into pieces and using
other people’s tools to manipulate
them. Secondly, whenever I use
the.se languages, I feel like I’m
programming something in them.
Certainly there are people who
put together sed scripts to do
really weird things without think¬
ing that they’re using language
technology, whereas in reality
(hey’re using recognition technol¬

ogy that’s quite fancy. People
simply don’t realize how much

they use language-based tools in

the UNIX environment.

A rather dilTerent example is a
silicon compiler I did a few years
ago called XI. [See Proceedings

of the IEEE Conference on Com¬
puter Design, 1983.] The syntax
is very C-like, but the semantics,
of course, are completely differ¬
ent. The first version used macros

to generate function calls. Then I
used an early version of C+ -f [by

Bjarne Stroustrup] with classes.
The last one was a modified
version of the front-end of a C
compiler. Steve Johnson worked
on that one. Assignments created
components on silicon and there
was a lot of runtime checking to
make sure the silicon design rules
were satisfied.

REVIEW: But have we painted
ourselves into a technologi¬
cal corner in the UNIX system
environment?

FELDMAN: I don’t think we’re
actually in a serious corner at
this point. UNIX has definite
limitations, but that relates
to how it was modeled. The
“small-is-beautiful, tools-are-in-
dependent” view is probably
something that’s going to be hard
to shake. Whether some other
viewpoint is actually going to be
needed in the near future, or
whether UNIX will adapt, it’s true
that many of the language tech¬
niques used today under UNIX
were designed to get around the
fact that UNIX processes commu¬
nicate via an ASCII line. If there
were some way to send packets
that were self-describing or struc¬
tured, perhaps there would be
less parsing going on. That’s not
clear. The UNIX model of a single
processor running on a modest
machine with an elementary pro¬
cess structure may cause some
j)roblems. f^ut at least it’s a very
comprehensible model that ap-

44 UNIX REVIEW SEPTEMBER 1985

pears to run nicely on a large
number of machines. It’s clear
that UNIX starts with a limited
base that only uses a small part of

the parameter space available to
it. For a while at least, this makes
it possible for UNIX to be cheer¬
fully extended; there are people
who sell UNIX machines with 12
processors, you know.

REVIEW: One view of pipes
is that they are a specializa¬
tion of the co-routine notion.
Doesn't this accentuate the
"sniall-is-beautiful, one-tool-to-
a-purpose" view?

FELDMAN: Pipes are not quite
strong enough to make co-rou¬
tines convenient. If you decide

that you're interested in things
like co-routines, then you want a
different signaling mechanism
than that offered by vanilla 6th
Edition-ish UNIX. However, with

all the IPC mechanisms that peo¬
ple have added, you can do mes¬
sage passing implementations of
co-routines. But it’s not easy to
put together complicated plumb¬
ing to send weird signals back
and forth. Both the signaling and

the pipe mechanisms are a bit

restricted in what they’re really
good at. As you try to build more
and more complicated thing$, you
run into more and more restric¬
tions. People who build transac¬
tion processing systems that need
communications between lots of
different processes find difficul¬
ties in setting this up. This is why
the larger, more baroque systems
of today have added communica¬

tion mechanisms. These addi¬
tions are attempts to get you out
of a corner.

j As you can see, I have contra¬
dictory views on the subject: on
one hand, I fear that UNIX, hav¬
ing a very definite model of what
it is supposed to be good for, will
end up having problems handling
the general case—because even
though you can stretch things,
yoM end up with stuff that is

relatively monstrous. On the oth¬
er hand, UNIX allows you to hack
a solution for almost any prob¬
lem. and that can buy you more
time.

UNIX, and C in particular, is
used by people who have to get
work done—and got tired of doing
it all by hand. So they wrote a

program. When you understand

int

the p
frequ
expre^

an

what

progra
alreac
instea

softwa
domai
late

langufi
scribi
softwi

are la

great
think

fore, i
you d(j)
but ion

Lisp a|re

:*oblem well enough, C is
ently a convenient way to

s it. Doug Mcllroy has made

eresting distinction: C is

you use if you are writing a

m to do something that you

y know how to do. If,
d, you want to talk about

re qua software, this is the
n of the languages of the
70s—abstract data-based
ges that offer ways of de-

ig scientific problems and
re issues. But then there

nguages like Lisp that are
for doing things you didn’t

you could do at all. There-

doesn’t matter how badly
them. The original contri-

s to AI that were written in
truly astonishing.

REVIIiW: Are CLU and Alphard
"languages of the late '70s"?

FELDII/IAN: Yes, the various lan¬
guages of that family are experi-

1 because there is no great
body of work outside of the home

organization. They really were

attempts to work out the implica¬
tions ^f some of the ideas of data

and languages. No lan-
hat has followed from that
has really gained accep-
Ada comes to mind, but

St say that I am not excited,
attempt to have the worst

types
guage
family

tance.
let'sju
It s an

Me

of both worlds.

REVIEW: Does Modula-2 sulfer
from the same defects as Ada?

FELDM
very pi

not vvrli
in it
and

people
this
conter
Althou|g
tilings
level,
simple
level

what’s

IAN: No. Modula-2 is a

ausible middle ground. I've
tten any serious programs

've read some programs,
/e talked to a number of

whose views I respect on
ridula-2 is a very plausible

rider for the sweepstakes,
^h it permits you to write
at a reasonably abstract
it still is a sufficiently
language at a low enough

you can understand
going on if you write in a

UNIX RE iVIEW SEPTEMBER 1985 45

FELDMAN INTERVIEW

straightforward fashion.

One of the joys of—shudder—
BASIC and Fortran is that with
modest tasks, you can just start at
the beginning and off you go.
That’s a hacker’s dream, but if

you have a program that’s rea¬
sonably complex, you can handle
it with a moderate amount of

effort in Modula-2. Ada and the
languages that it came from were
not designed with that as a goal.

Simple things just aren’t simple.

The only hope for those languages

is that they might skirt some of
the complications inherent in

complex tasks.

REVIEW: Steve Bourne claims

that there is a genuine advance
to be made if we can ajjord to
use Lisp-like languages. But he

wonders if we aren't already

too committed to C technology.

FELDMAN: This is a religious

argument—of course you can

always convert any C-type struc¬
ture reference to a not necessarily

efficient sequence of CDADRs
and CDADADRs, and there are

programs that will do that. Simi¬

larly, any C program can happily
have arbitrarily complicated list
structures. C lives on pointers. I

fail to see an actual dichotomy.
What the real difference is, I

believe, is that Lisp programmers
believe they have the solution. C
programmers are happy to be¬
lieve they have a solution. It is
very easy to write a C program
that’s not very efficient. I write a

large number of them.
The major difference comes in

the environment that surrounds
the languages, the persistent
workspace of a Lisp program as
opposed to the evanescent one of
a C program. This, I think, is
the more important distinction.

That's something that you can get

around if you decide to take a
different attitude toward the C
environment. This is the very sort

of thing that I find of research

46 UNIX REVIEW SEPTEMBER 1985

I really do not believe

there is one language

that will combine them

all and prove to be the

right solution.

interest. It doesn’t violate any of
the canons of UNIX or C to

consider changes like that.

REVIEW: Is there a change
coming in the roles of C and

Lisp?

FELDMAN: Not that 1 can see.
First of all, let it be observed that
many UNIX systems run both
languages in the same address
space. Franz Lisp can arrange to
call C routines, which goes to
show that the two can coexist, if

not cheerfully then at least grum¬
pily—or perhaps “conjugally” is
fairer. I don’t think there is any
obvious change coming in that
relationship. People who like Lisp
will refuse to do anything else
anyway. People who program in C
will, on the other hand, find that

to be perfectly congenial—be¬

cause it matches the way you get
at a UNIX system and because it
matches a way of thinking.

REVIEW: Is there a need for

language research? In what
directions?

FELDMAN: There is certainly a
need for language progress. What
that means for language research
is a somewhat difficult question.

The results of conscious language

research have entered the canon
of Computer Science without af¬
fecting work in any short-term
way. Take the data type work of

the mid-’70s, for instance: it’s not
quite clear whether Ada repre¬
sents the nadir or zenith of that
work.

For all that, there clearly are
language directions that need to
be investigated further. Every¬
body, of course, is charmed by
languages in the VisiCalc image.
That represents a fascinating ap¬
proach toward language in that it
gets people to use computer lan¬
guages while making them think
they’re just getting the computer
to do things for them. But 1 don’t
know anybody who has managed
to make major progress there.
Clearly, theoretical work being
done with semantic underpin¬
nings has been valuable. I’ve
truly been impressed with dem¬
onstrations of the automated way
in which things can be generated
to interpret and execute a pro¬
gram based on a really deep
semantic description. The fact

that all such systems tend to run
two to three orders of magnitude
slower than you would expect is
also a little depressing. Neverthe¬
less, I'm assuming that the theo¬
rists working on semantics are
eventually going to sharpen the
understanding of what really

does and doesn’t belong in

languages.
Quite different are the people

who simply are interested in con-

XENIX Operating System

Mankind searched the world over

for the multiuser operating system of the future.

Then IBM® chose XENIX® for the PC AT. And the future was iioik

THE SANTA CRUZ OPERATION PRESENTS

AN SCO PRODUCTION in exclusiveassociation with MICROSOFT CORPORATION
THE MULTIUSER, MULTITASKING PC BLOCKBUSTER “XENIX NOW"

STARRING VISUAL SHELL • MULTISCREEN” • MICNET • THE BERKELEY ENHANCEMENTS
AKlr^ I V'_AACD/^.C_ I I
AND INTRODUCING C-MERGE AS THE MS-DOS DEVELOPMENT ENVIRONMENT |

FEATURING WORLD FAMOUS SCO TRAINING AND SUPPORT for DEALERS • EI^D USERS • ISVs • OEMs

AND AN INTERNATIONAL CAST OF HUNDREDS OF XENIX APPLICATIONS

INCLUDING LYRDC AS THE UNIX/XENIX WORD PROCESSING SYSTEM |

PRODUCED AND DIRECTED BY THE SANTA CRUZ OPERATIO.

SCREENPIAY ADAPTED BY THE SANTA CRUZ OPERATION FROM ORiaNAL STORIES BY Ml

IN BREATHTAKING SELECTABLE COLOR

NOMINATED FOR ★ BEST EXDCUMENTATIONI ★ BEST SUPPORT!

★ BEST ELECTRONIC MAIL AND NETWORKING! ★ MOST AP

★ MOST COMPLETE UNIX SYSTEM!

lie

.PPI

ROSOFT AND AT&T

BEST TRAINING!

IICATIONS!

THE SANTA CRUZ OPERATION

RELEASED FOR MOST POPULAR PERSONAL COMPUTERS.
APPUCATIONS ALSO AVAILABLE: LYRIX MUOIPIAN®, INFORMIX®

LEVEL II COBOL” 3270 MAINFRAME COMMUNICATIONS
(408)425-7222
TWX: 910-598-4510SCO SACZ

M MULTIUSER OPERATION SUGGESTED

XENIX WILL TURN YOUR PC INTO A REAL COMPUTER

Circle No. 228 on Inquiry Card

CMCMLXXXIV The Santa Cruz Operation. Inc.
The Santa Cruz Operation. Inc., 500 Chestnut Street, P.O. Box 1900, Santa Cruz. CA 95061 (408) 425-7222

UNIX is a trademark oi ATM Bell Latwratories • Lyrix and Multiscreen are tractemarks of The Santa Cruz Operation. Inc. • IBM is a
International Business Machines Corporation • XENIX ind Multiplan are registered trademarks of Microsoft

Corpoi ation. Informix is a registered trademark of Relational Database Systems. Inc. • LEVEL II COBOL is a trademark of Micro Focus. Ltd.

w
1^"'■ FELDMAN INTERVIEW

structing programs that do some¬
thing useful. When you look at

their programs, you’ll find that
they actually embody a language,
and that they reflect the changes

that have resulted from the move
from the fixed-card-field com¬
mand languages of the ’60s to the

interesting command syntaxes of
the ’70s, to the menu-driven or
fill-in-the-box applications of the

’80s. 1 view all of them as lan¬

guages, and 1 view all of these
activities as part of language
research—even though most of
the projects I’ve described could

not be published in respectable
language journals. That’s really

more of a condemnation of the
language journals than it is of the

work.

REVIEW: How do you account

for the success oj C, given that
better languages like Algol-68

were available at the time qfC's
introduction but were not
accepted?

FELDMAN: Although more com¬

prehensive languages like Algol-

68 existed at the time, they did

not run very cheerfully on 64K
PDP-1 Is. It’s not clear to me that
Algol-68 is actually a better lan¬
guage than C. It is more compre¬
hensive, it has a neater intellec¬
tual base, but in spite of that, C
turns out to be easier to program
in. You can say that since we’re
back to big address-space ma¬

chines that are now cheap, any¬
body can suddenly afTord Algol-
68 or its moral successor, Ada,
but I’m not sure about that. 1
would feel comfortable, though,
saying that the real success of C
stems from the fact that it made it
possible to write programs that fit
nicely in a restricted environ¬
ment. It’s also true that C fits into
UNIX in a very nice way, and that
it allows somebody who thinks at
a relatively low but intelligent

level to write good programs that
turn out to be very portable. It’s

easy to write C programs that are

portable, and yet efficient in a

large range of environments.

REVIEW: When you say''porta¬

ble". what is it that you mean?

FELDMAN: That the same C pro¬
gram will run on a very wide

range of hardware—typically un¬
der the same UNIX operating

system. In reality, though, many

of the programs will run on

systems that don’t have UNIX at
all but simply support the C
library.

REVIEW: Without change?

FELDMAN: Frequently without
any change. With a little bit of
effort you can harden them to run

on systems that are at least
moderately different. Even in my
Fortran compiler, which of course
is machine-language-dependent,

because it has code generation
requirements, the amount of code
that is specific is minuscule com¬
pared to the size of the compiler
itself. Other programs like EFL

and make are almost totally in¬
sensitive to the systems they run

on.
Portability is not a simple topic.

At one point, it appeared that
portability was a well understood
problem—that all you had to do
was get your language right. It’s
becoming clearer, though, as we
agree on what we want to trans¬

port, that there’s more and more
to be encompassed in the model
that underlies a portable pro¬

gram. The reason the programs I
described are portable is that they
only want to manipulate rather
simple objects and do rather sim¬
ple computations involving char¬
acter strings. If my programs had
to be really portable and totally
independent of problems like
variations in floating point, I
suddenly would have a very dif¬
ferent problem. And if I wanted to
deal with very complicated, envi¬
ronmentally sensitive issues like

the manipulation of a wide vari¬

ety of screens, I would have
something very hard to port. A
satisfactory definition then, from

a practical point of view, is that

something is portable if it’s a lot
easier to move than to rewrite.
Something is truly portable if it

moves almost entirely by itself. It
turns out that if you are relatively
careful, C can be a very good

vehicle for writing programs that
are efficient across the very broad

range of systems that take in a
considerable historic run of oper¬
ating systems.

REVIEW: Have we made any

progress in language technol¬
ogy since the mid-’60s? How far
have we come since Simula-67?

FELDMAN: We’ve come all over
the map. Simula-67 was a signifi¬
cant progress that was only one
small branch of what was hap¬
pening in languages. But if you
believe in that branch, then
Simula-67 represents a some¬
what crude understanding of how

classes might operate. Many lan¬
guages that have followed have
made better use of those ideas.
Look at CLU and Alphard, for
instance. Those are research ve¬
hicles that contain similar con¬
cepts but also support some seri¬
ous work. Smalltalk ideas are
another intellectual outgrowth of
Simula thought, but perhaps
that’s not entirely fair. All of
those languages represent very
definite progress towards unspe¬

cified goals.
The important assertion is that

there is no answer. I really do not
believe there is one language that
will combine them all and prove
to be the right solution. Because if
you tried to combine all the
approaches, you’d end up with a
very large language that does a
mediocre job of representing any¬
thing. I have no objection to there

being lots of different languages,
each of which has a different base

48 UNIX REVIEW SEPTEMBER 1985

of what it really cares about. A
functional language for research
is fascinating even though I am
pleased not to program in one.

REVIEW: Well, indeed, Edsger
Dijkstra claims that minds are
ruined by exposure to the con¬
cepts of Fortran.

FELDMAN: Well, mine’s ruined.
By that definition 1 do not neces¬
sarily consider the purist ap¬
proach to be the one that gets you
anything of practical value or
even of lasting interest. 1 will very
strongly disagree with the view
that one should only think clean
thoughts without remembering
anything.

REVIEW: You think maybe that
good minds can survive ex¬
posure to even ill-J'ormed
concepts?

FELDMAN: Yes. I would say that
an education that permits you to
see more than one view of the
world is probably superior to
religion. My mind was spoiled at a
fairly early age by learning ma¬
chine language and Fortran, and
also by learning Lisp and PL/I.

REVIEW: How will the comput¬
ing community address lan¬
guage technology limitations?

FELDMAN: Most of the comput¬
ing community in one sense will
use whatever it finds convenient.
Again, it harks back to the ques¬
tion of why C has been such a
success. One reason is that it
gives you very good access at a
low level to the way UNIX runs.
Therefore, it is the most conve¬
nient language, though not the
only language, to use for program¬
ming in the UNIX environment.
Therefore, anybody who is going
to be a serious user of UNIX is
probably going to use C at some
point. Likewise, somebody who
sits down in front of a Symbolics
machine and starts using expert
systems is going to end up learn¬

ing Lisp at some point. The aver¬
age person who simply wants to
do something rather than talk
about it is going to make the best
use of whatever fits into the
environment.

So the question is: what will
research provide that will make
life seriously better? In particular,
how will research address the
limitations of language technol¬
ogy? I believe that there will be
some relaxation because systems
are going to get considerably
more comprehensive and smarter
about what people are doing.
'‘Programming environment” is a
buzzword that doesn’t carry quite
the force that’s required. But the
integration of a large number of
functions so that I can count on

tie

my
doing
more
pres:
langiji
mom
advah
vide
make
trou
or
ways
need
inve
going
lems
how
how
som
ing.
develb

5;ystem to follow what I’m
and help me out is probably
important than how I ex-
what I want in a computer

lage. The Lisp systems at the
ent are probably the most
iced in this way. They pro-

all kinds of approaches that
it possible to get out of

quickly, whereas in C
ical—C especially—you al-
get yourself in trouble and
help getting out. Simply

rjting new languages isn’t
to solve any of these prob-
A better understanding of

people write software and
:o let them write it better is

ething that’s truly interest-
iThat’s the direction I think
pment will take. ■

Pasi

Chance Of A
Lifetime Inject
The Brandon Consulting Group, one of
complete line of services in the field of
from planning through implementation
tract with a major New Jersey based c
line of micro computers.

As a Brandon employee, if chosen for uii
be involved in the development of custo
for use on this new micro. In addition,
support team receiving "hot line" calls .
States. You will be simulating problems
and will be providing your expertise in
highly visible position.

The ideal candidate will have a minimiu,
rience with UNIX/‘C! Any hardware emi:

We offer very competitive salaries and
three weeks vacation. For more inform^::
contact: Natalie Fornal.

the few firms offering a
information processing,

i, has been awarded a con-
:onglomerate producing a new

tl)is exciting project, you will
m and packaged software

^ou will be a member of a
j|rom all over the United
that have been encountered
solving them. This is a

of 2 years current expe-
ironment will be acceptable,

e xcellent benefits including
~ .ion about us, or to apply.

BRANDON CONSULTING
GROUP, INC.
Corporate Headqu^ters
1775 Broadway, New Ibrk, NY 10019
(212) 977-4400
(201) 745-4700

Circle No. 256 on Inquiry

UNIX R

Card

EVIEW SEPTEMBER 1985 49

TOWARD
ANSI

C

How the standards
are taking shape

by Thomas Plum

50 UNIX REVIEW SEPTEMBER 1985

The American National Stan¬
dards Institute (ANSI) develops
standards for practically every¬
thing—including the C language.
ANSI Committee X3 bears re¬
sponsibility for Information Pro¬
cessing Systems, and support for
its Secretariat is provided by
CBEMA, the Computer and Busi¬
ness Equipment Manufacturers
Association. Operating within
this framework is Technical Com¬
mittee X3J11, the group that
considers C standards.

The first meeting of X3J11
took place in June, 1983. Since
then, it has held quarterly meet¬
ings across the United States.
There are currently about 100 full
members (or alternates) and a
similar number of observers. In
March, 1985, the committee
voted to request ANSI X3 to
distribute its current draft of
standards as an ANSI Informa¬
tion Bulletin, This document is
now available for informal public
comment. (See the section titled
“Further Information” later in
this article for word about how to
order a copy.)

The current schedule calls for
publication of the draft proposed
American National Standard for
C some time after March, 1986. If
this formal public review turns
up no big surprises, we could
expect to see an ANSI standard
for C sometime late in 1986.

GUIDING PRINCIPLES

There are a few basic princi¬
ples that have guided the commit¬
tee’s work. One of the most
important is: Don’t Break Work¬
ing Code. User programs that
conform to the Kernighan and
Ritchie (K&R) description of C
should continue to compile and
execute as before. The same is
basically true of programs written
in more recent variants of C,
except where some of the later
variants have disagreed with
each other. This means that the
committee has adopted a “practi¬
cal” point of view (in consider¬
ation of the large user investment
in existing C programs).

Continued to Page 58

Illustration by Nancy Jorgensen

LISP
ON THE
MOVE

How UNIX plays
a role

by Joel Hass

Since its introduction in 1959,
Lisp has been the dominant lan¬
guage in the field of artificial
intelligence. Of late, it also has
become prominent in A1 offshoot
work done on expert systems.
The spread of Lisp outside of
academic circles is a fairly recent
development, however.

John McCarthy, the author of
the language, first unveiled it in
the academic community shortly
after the introduction of Fortran,
and there for the most part Lisp
has remained—save a few excur¬
sions into major research labs.

The large memory require¬
ments and CPU demands of pro¬
grams written in Lisp have limit¬
ed their use in more general
environments. Recently, though,
radical improvements in hard¬
ware have opened new doors to
the language. Lisp systems of one
type or another are now available
on a wide range of machines,
including UNIX-based multiuser
computers, customized Lisp ma¬
chines, and small personal com¬
puters like the IBM PC and the
Apple Macintosh. It seems likely
that Lisp will continue to thrive,
and that its use will grow expon¬
entially as the increased avail¬
ability and affordability of hard¬
ware allow the capabilities of the
language to address a wider range
of potential applications.

THE LISP STORY

Before considering how this
growth will occur, though, let’s
first look at what Lisp is and why
it’s the preferred language in the
A1 field. Perhaps the primary
reason is that a Lisp program is
naturally represented in Lisp
data structures. Thus, programs
and data can be treated some¬
what interchangeably, allowing
Lisp developers to write programs
capable of running and modifying
other programs. This ability can
be focused internally, allowing a
program to make changes to lines
of its own code while running.
Because of this self-modifying
ability. Lisp programs seem to
“learn”. For example, an expert
system program incorporating a

UNIX REVIEW SEPTEMBER 1985 51

LISP DIRECTIONS

collection of rules that tell it how
to react in various circumstances
might discard some of those rules
if it finds them not being used.
It could then generate replace¬
ments. This involves taking spe¬
cific examples and generalizing
them into a useful rule. The fact
that Lisp programs and data are
similar make the Lisp environ¬
ment much more convenient for
this than the environments pro¬
vided by such languages as For¬
tran. In practice, self-modifying
programs are prone to disastrous
results, so most AI programming
is done using higher level con¬
cepts built on top of Lisp (OPS-5
ofTers a well known example).
These specialized Al environ¬
ments force additional discipline
on program behavior.

Other useful Lisp features in¬
clude powerful debugging facili¬
ties; the availability of both an
interpreter for program develop¬
ment and a compiler for the
production of fast code (thus al¬
lowing parts of a program to be
run compiled while other parts
are run interpreted); runtime type
checking; dynamic storage allo¬
cation (known as “garbage collec¬
tion” in Lisp parlance); and a
macro facility that allows for easy
extensions of the language.

The best Lisp engines of the
1960s and early 1970s were
found in the DEC line of PDP-6,
PDP-10, and PDP-20 computers.
These machines came equipped
with an excellent instruction set,
a comfortable operating system
or two, and what for the time was
an enormous address space (2.5
MB). Running on these machines
was a dialect of Lisp called Mac-
Lisp, which had been developed
at MIT.

Some dialects of Lisp ran under
UNIX on PDP-lls during this
time, but UNIX and Lisp made
their first significant link via
a program named MACSYMA
on PDP-lOs. Containing over

One problem is that

the name “Common

Lisp" can be applied to

any product by any

vendor.

300,000 lines of Lisp code, MAC¬
SYMA made it possible to perform
a large number of symbolic math¬
ematic operations (such as differ¬
entiation and integration), can¬
cellation of terms in fractions,
and various types of differential
equations.

MACSYMA was developed in
MacLisp at MIT, where, among
others, Professor Richard Fate-
man was involved. Soon after
leaving MIT for UC Berkeley in
1974, Fateman turned his efforts
to looking for a vehicle on which
to run MACSYMA. Berkeley had
no PDP-lOs, but it did have a
collection of PDP-1 Is running an
early version of what was to
become Berkeley UNIX. The UNIX
operating system had already be¬
come the choice of many of the
computer scientists at Berkeley,
so when the MACSYMA group
formed by Fateman purchased a
VAX (with help from the National
Science Foundation), it made ar¬
rangements to use UNIX on the
machine.

Version 32/V, implemented by
Tom London and John Reiser of
Bell Labs, was the first variation
of UNIX the group tried, but it
failed to take advantage of the
virtual memory capabilities of
the VAX. Without the use of its
virtual memory, the VAX actually
offered less capacity than its
predecessors. To correct this
deficiency, Fateman and others
worked to modify the system. The

end result was the release of
3BSD and Franz Lisp, an adapta¬
tion of MacLisp for the new
system developed by John Foder-
aro and others under Fateman’s
direction.

By taking advantage of the
VAX’s virtual memory capabili¬
ties, 3BSD transformed the ma¬
chine into a powerful Lisp vehicle
capable of handling 20 users
simultaneously. The adapted ver¬
sion of MACSYMA was renamed
“Vaxima”, and Franz Lisp was
included with the various Berke¬
ley UNIX distributions. In this
way, UNIX has served to spread
Lisp far beyond its academic
womb.

LISP TAXONOMY

There are two main families of
Lisp used by serious developers
today. One, based on the MacLisp
dialect, was developed on PDP-
lOs at MIT. Its descendents in¬
clude ZetaLisp, Common Lisp,
and Franz Lisp. The other major
strain is the InterLisp family,
which first gained widespread
use on PDP-lOs and now runs on
Xerox Lisp machines. Dialects
with smaller followings also exist,
including PSL (Portable Standard
Lisp), an early attempt at stan¬
dardization that failed due to lack
of power and portability; LeLisp, a
French variant; Scheme; and T.
The last two, which like MacLisp
originated at MIT, rationalized
certain aspects of functions and
data typing. They also substitut¬
ed more reasonable terminology
for Lisp terms like car, which is
used to refer to the first element
of a list (in Scheme and T, the
term is Jlrst). Obscure terminol¬
ogy such as car and cdr owes to
Lisp's age. For instance, car
is an acronym for “contents of
address register", a reference to
address fields in an early IBM
7090 series machine. Rationali¬
zations of such acronyms might
seem appropriate but Scheme

52 UNIX REVIEW SEPTEMBER 1985

and T have made few inroads into
a Lisp community grown fond of
its cars and cdrs.

The Lisp world lacks a body
that sets standards for it in the
way the American National Stan¬
dards Institute has set criteria for
languages such as Fortran,
so dialects that diverge from the
major strains of Lisp regularly
emerge. Because of this, a group
of people from academia, indus¬
try, and government met in 1981
to establish a standard called
“Common Lisp”. A chief advocate
of the Common Lisp effort was
the Defense Advanced Research
Products Agency (DARPA), the
organization that funds the bulk
of artificial intelligence research
in the United States. DARPA was
intent on consolidating Lisp de¬
velopment and artificial intelli¬
gence research so that results
from the two projects could be
shared. This was especially im¬
portant to DARPA in view of the
emergence of A1 technology in
robotics, speech and image un¬
derstanding, and other applica¬
tions of potential use to the
military and industry.

The Common Lisp effort was
somewhat controversial since it
lacked input from such groups as
the large InterLisp community
using Xerox machines. Some,
in fact, branded the effort as
an “International Common Lisp
Conspiracy”. Nevertheless, the
Common Lisp effort forged on,
forming a large committee of
volunteers for the discussion of
issues. After some argument and
dialogue, much of it via ARPANET
mail, a small subset of the com¬
mittee hammered out a final
report. The specifications on
which they agreed appear in a
book written by G.L. Steele, Com¬
mon Lisp, the Language (Digital
Press), which appeared in May,
1984. Actual implementations of
Common Lisp have recently sur¬
faced, although none as yet have

UNIX is seen as an ideal

delivery system for

software produced on

customized Lisp

development

hardware.

contained all of the Common Lisp
features.

Common Lisp is a very large
language, as one might expect of a
product generated by committee.
It includes many data types and
functions not found in previously
prevalent Lisp implementations.
For example, complex numbers,
rational numbers, and four types
of floating point numbers and
their associated functions are
included. In part, this stems from
a desire to make Lisp a full
language, suitable for numerical
computation as well as for symbol
manipulation.

The main thrust of the Com¬
mon Lisp effort, however, was to
achieve a standard. Many people
in the Lisp community felt that
the lack of a common banner was
scaring industry away. Perhaps
they were right. Current indica¬
tors show that most Lisp users
and developers are indeed em¬
bracing Common Lisp.

Does this mean Common Lisp
wili bring order, stability, and
compatibility to the Lisp commu¬
nity? Not likely. One problem is
that the name "Common Lisp”
can be applied to any product by
any vendor, leading to Common
Lisp products that implement
only a small fraction of the total
language, and may or may not
follow the specifications outlined
in Steele’s book in even those

small fractions. Some of the
"Common Lisp” products cur¬

rently available for the IBM PC
and other micros are a good
example of this phenomenon,
which also is occurring on larger
machines. A key phrase to watch
for in descriptions of Lisp dialects
is: “extended subset of Common
Lisp”. With some imagination,
this description could be applied
to a washing machine.

Beyond the problem of enforc¬
ing correct usage of the term, the
Common Lisp community also
must deal with the faet that many
features were left unspecified by
the people who took part in the
effort to establish a standard.
Debugging features were among
those left out, as were editors,
graphics interfaces, interfaces to
other languages, mouse and win¬
dow support, error handling, and
commonly used language fea¬
tures such as Flavors, which is
used for object-oriented program¬
ming. Since various implementa¬
tions will incorporate these fea¬
tures in various ways, they are
likely to be incompatible, despite
their eommon ’’Common” label.

THE UNIX ROLE

How does the commercial AI
community view UNIX? Current¬
ly. it’s seen as an ideal delivery
system for software produeed
on customized Lisp development
hardware. High-end Lisp develop¬
ment machines simply are too
expensive and too limited in func¬
tion to be suitable for the distribu¬
tion of expert systems to a wide
range of sites. Personal comput¬
ers, on the other hand, are widely
prevalent but have too many
limitations to run a full-fledged
Lisp dialect. Thus, UNIX ma¬
chines. which are already widely
distributed for other purposes
and offer per-user costs that are
rapidly approaching the nominal
point, seem to be the ideal
solution.

UNIX REVIEW SEPTEMBER 1985 53

fo • rum, n. (pi. FORUMS)
1. A public meeting place for
open discussion. 2. A medium (as
a newspaper) of open discussion
or expression of ideas. 3. A pub¬
lic meeting or lecture involving
audience discussion. 4. A program
involving discussion of a problem
by several authorities.

conclusions just like in-person meetings.
From an economics point-of-view, eForum

is the most cost effective method for bringing
together the best minds in your company to
meet on key issues—without the price of a
single plane trip, the aggravation of schedule
conflict or time-consuming delay.
eForum is a communications breakthrough
product.

eFomm lets you create electronic meetings
with attendee lists as large as the company staff
or as small as a three-person design team.

Not only can eForum handle hundreds of
meetings for your company, but, at the same
time, limits each participant to only attending
meetings to which he belongs.

)

•eForum designed by Marcus Watts, Copyright 1984,

Network Technologies International, Inc. (NETI).

Electronic meetings continue the
automation of knowledge transfer which
started with electronic mail.

Electronic meetings are an extension of the
communications revolution which started with
electronic mail. It takes seconds to send a letter
using electronic mail instead of days via
regular mail. Certainly e-mail is a giant
step in automating correspondence between
two people.

eForum goes yet further to provide
immediate communications automation. But
for groups. It creates electronic meetings
which allow attendees to participate in
discussions using the dynamic ebb and flow
of points, counterpoints, comments and

eFonim, n. 1. Low cost electronic
meeting system (as in needing no
scheduling or travel to attend), v.
1. Automatically organizes, indexes,
files and leaves a complete written
record of entire meeting. 2. Allows
adding more attendees than normal
at no extra cost. 3. Gives plenty of
time to think before responding,
adj. 1. Keeps everyone up-to-date.
2. Doesn’t let geographic or time
zones determine who can attend
the meeting.

The Electronic Meeting Manager

If you have ever attended a meeting,
you know how to use eForum.

Simply attend eForum meetings any time
convenient for you. Review new discussion
materials. eForum keeps track of what you’ve
seen. Enter your comments or new discussion
points. Instantaneously, your ideas are
available to every member of your eForum
group regardless of geographic location.
That’s productivity.
eForum has the flexibility to fit your
communications needs.

• eForum 4000 - a national communications
network available with a local phone call
from most locations.

• eFomm 2000 - UNIX™ based central host
software for supermicro and minicomputers.

• eFomm WS - software for the IBM PC and

compatibles to interact with efbmm central
host software.

Call 1-800-638-4832 or in Michigan call
(313) 994-4030 collect for information on:
• Automating your company’s meetings by

using General Electric Information Service,
the world’s largest communications network,
to tie together your microcomputers and
terminals.

• Creating your own meeting network for your
department or company. Software, hardware
and leasing available.

• Establishing OEM and VAR agreements
to enhance the value of your software or
hardware, with the communications power
of efbmm. circle No. 285 on Inquiry Card

Network Technologies
International, Inc.

The Arbor Atrium Building
315 West Huron

Ann Arbor, Michigan 48103

’"UNIX is a trademark of AT&T Bell Laboratories

eForum is a trademark of Network Technologies International, Inc.
(NETI)

s LISP DIRECTIONS

As an example, consider a
developer of stock options analy¬
sis systems at work on a Sym¬
bolics 3600 to produce a so¬
phisticated A1 program. After
investing several staff years of
work into the transfer of hunches
from a prediction scheme to Lisp
code, the developer understand¬
ably wants to deliver the com¬
pleted expert system to hundreds
of scattered financial analysts.
These people have neither the
need nor the desire for a Lisp
machine that the developer’s own
AI guru has, so the developer
naturally looks to the UNIX sys¬
tems already located in many
potential customer sites for a
solution. In this scenario, UNIX
gets the delivery pie while the
manufacturers of Lisp machines
reap the benefits of development
work in the rapidly expanding
Al market. UNIX programmers,
meanwhile, have access to the
object-oriented programming ca¬
pabilities of Flavors and the
functional programming abilities
of languages such as FP (see the
4.2BSD UNIX Programmer's
Manual).

WHITHER LISP?

The prevalent opinion is that
the Lisp machine market will
explode. Arthur D. Little projects
a Lisp machine sales volume of
$10 billion by 1990 [Computer-
World, May 6, 1985, Update/7).
Some developers, however, are
finding that though 68000s or
VAXen running Lisp may not
have all the whistles and bells of
Lisp machines, they can be used
with a minimal (often invisible)
investment of time and money.
UNIX machines already can be
found in many of the laboratories
starting work on Lisp-based
programs and expert systems.
Lisp systems that can run on
these computers are available at a
relatively small expense. Many

Though 68000s or

VAXen running Lisp

may not have all the

whistles and bells of

Lisp machines, they

can be used with a

minimal (often

Invisible) investment of

time and money.

manufacturers of 4.2-based com¬
puters, in fact, include a Lisp
system as part of their basic
offering.

For many, the faster speed of
Lisp machines must be weighed
against the extra effort and time it
takes to acquire, install, and start
using one. A good proportion of
Lisp development work today is
being done on VAXen, Suns, and
Apollos purchased primarily for
other purposes.

What of the case, though,
where money is no object and the
best must be obtained at any
cost? Here, at least, where the
scarcest resource is human Lisp
expertise, can the Lisp machine
stay unchallenged as the ma¬
chine of preference? Perhaps not.
A battle is looming on the hard¬
ware front for the hearts and
minds (and wallets) of Al and
expert system developers. On one
side are the Lisp machine manu¬
facturers—LMl, Symbolics, Tex¬
as Instruments, and Xerox—
whose machines contain custom
processors with specialized archi¬
tectures designed to run Lisp.
For the last few years, these

manufacturers have more than
doubled their combined sales an¬
nually. Sales projections call for
no abatement.

On the other side are UNIX
system manufacturers who have
targeted the same markets with
machines based mainly on the
Motorola 68000 and National
Semiconductor 32000 families of
chips. This camp also includes a
scattering of additional machines
such as the MicroVAX II from
DEC. These UNIX machines have
the advantage of being both less
expensive and more versatile,
with the ability to run a large
variety of non-Lisp as well as Lisp
software. Lisp machines cur¬
rently sell at $40,000 and up
for single-user configurations,
enough to buy a very respectable
UNIX supermicro affording mul¬
tiuser access. Prices for Lisp ma¬
chines, of course, can run much
higher—easily over $100,000
with various options thrown in—
though rumor has it that a
$10,000 version will be available
by Fall ’85.

There’s no question but that
the Lisp machines have a signifi¬
cant speed advantage. On stan¬
dard Lisp benchmarks they per¬
form from two to four times faster
than 68010-based systems. Early
evidence, though, seems to indi¬
cate that much of this speed
advantage will disappear once the
68020 chip replaces the 68000
and 68010. The 68020 seems to
run Lisp from two to four times
faster than the 68010. Similar
speed increases will come with
the National Semiconductor
32032.

Apart from speed, another ad¬
vantage currently enjoyed by Lisp
machines is an integrated envi¬
ronment for Lisp development.
Residing in this environment
are a full array of bitmapped
graphics, windows, debugging
facilities, and object-oriented
programming capabilities. These

56 UNIX REVIEW SEPTEMBER 1985

features can and are being imple¬
mented on UNIX-based systems,
however. When in place, these
systems may strike a fatal blow to
Lisp machines, or at least cause a
precipitous drop in their pricing.

What can we expeet to see of
Lisp in the UNIX community in
the meantime? First, we can look
for continuing improvements in
one or two of the Lisp dialects
already present in the UNIX envi¬
ronment, while we can expect to
see support for the other dialects
dissipate at all but a dwindling
number of sites. As an extension
of this trend, the use of Lisp under
esoteric operating systems will
quickly disappear. The surviving
dialects will flourish as their base
of applications continues to grow,
and as added features give them
Common Lisp compatibility and
allow them to take advantage of
the faster processors becoming
available. Along with the price of
UNIX hardware, the prices of
these Lisp products should drop
steadily to the levels of current
personal computer languages.

Second, a number of new Com¬
mon Lisp dialects will appear that
are likely to be incompatible with
one another in many respects.
DEC has already released a ver¬
sion of Lisp for VMS. Similar
products have appeared—or will
shortly—from Data General, HP,
and others. In another three years
or so, we should begin to see the
arrival of parallel processor Lisp
products designed to take advan¬
tage of the multiprocessor archi¬
tectures of UNIX machines like
those offered by Sequent and
ELXSI. DARPA is already funding
research that will bring this
about.

Designing versions of Lisp that
can take advantage of new tech¬
nology in this way is one of the
leading research projects under¬
way in universities today. Hence,
in a short time, we can expect to
see Lisp co-processors that can be

plugged into systems much like
floating point processors can to¬
day—at prices that also are quite
similar.

Joel Hass is one of the founders of
Franz Inc., which sells both Franz

Lisp and a new Common Lisp
product, ExCL Common Lisp. He
has a Ph.D. in Mathematics from
UC Berkeley. Questions for Mr.
Hass can he sent to 1141 Harbor
Bay Parkway, Alameda, CA 94501
(4151769-5656). ■

Your UNIX* Course Source
FALL CURRICULUM SCHEDULE

UNIX Operating System DATE
UNIX Operating System, Sep 3-5/Nov 25-27

a Conceptual Overview
UNIX Operating System for End Users Sep 3-6
UNIX Operating System for Appl. Dev. Sep 3-6
Advanced UNIX Commands Sep 9-13
C-Shell Programming Sep 9-13
Bourne Shell Programming Oct 7-11
UNIX Systems Administration Sep. 16-20
Advanced UNIX Systems Administration Sep 23-27
UNIX Communications Sep 30-0ct 4
UNIX Networking Oct 7-11
UNIX Security Oct 14-18

UNIX PROGRAMMING
Basic C Language Programming Oct 21-25
Intermediate C Language Oct 28-Nov 1
Advanced C Language Nov 4-8
SMC BASIC Nov 4-8
INFORMIX/C Interface Sep 9-13/Nov 11-15

UNIX APPLICATION TOOLS
INFORMIX Applications Development Nov 18-22/Dec 16-20
MULTIPLAN Nov 18-22
UNIX/INFORMIX for End Users Dec 2-6

All courses are taught at our training facility in Cincinnati, Ohio.
The tuition is $600 per week, except Conceptual Overview is $400.

Our courses can, by special arrangement, be presented at your site —
we can even bring the hardware!

Call now for Course Catalog and
registration information: 3^ '733-A~7A~7

Hi
ITDC

Information Technology
Development Corporation

4000 Executive Park Drive / Suite 31 □
Cincinnati. Ohio 45241

‘UNIX is a registered trademark of AT&T Bell Laboratories.

Circle No. 274 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 57

C STANDARDS

C STANDARDS
Continued from Page 50

On the other hand: All Imple¬
mentations Will Change Some¬
what. From the start, it was
agreed that no existing compiler
would be held up as a model of
perfection. This has meant that
all implementers must accept a
certain number of tradeoffs for
the good of the process—a fact
that has contributed to a relative¬
ly harmonious outlook.

Not All C is Written by Hu¬
mans. C should remain suitable
for use as an intermediate lan¬
guage. This has prompted
the retention of certain syntac¬
tic forms that would be unlikely

Most X3J11 members

feel that C does not

need any ''fixing".

to be produced by human
programmers.

Coexist with Current Tools.
The committee has avoided all
changes to C that might require
more powerful support tools (like
linkers). The most hotly-debated
proposal of this sort would have

required longer external name
significance (31 characters with
two cases, for instance, since
the draft provides for internal
names). After much discussion,
the committee defeated the pro¬
posal upon deciding that primi¬
tive six-character one-case link¬
ers could still be a part of a
conforming implementation.

Another accommodation made
to current linkers involves com¬
mon linkage. The UNIX linker
allows several source files each to
contain an external declaration
like “int i;”, and be linked via
common. Not all linkers can
support common adequately for
C, however, so the draft main¬
tains the linkage restriction from
K&R: all but one of the files must
specify the word extern on the
declarations. The UNIX common
linkage thus becomes a system-
specific extension, making it
something programmers wanting
to port to non-UNIX systems will
need to avoid.

The committee also wants to
permit cross-language linkage
(such as the calling of C functions
from Fortran programs), so no
changes were adopted that would
require unusual calling-sequence
protocols.

Stay Close to the Machine.
The committee feels it is vitally
important that efficient code gen¬
eration be allowed. For example,
char still can be signed or un¬
signed according to the ma¬
chine’s characteristics. (However,
ANSI C also will allow explicit
specification of signed char and
unsigned char in the interest of
greater portability.)

Staying close to the machine
also means keeping C available
for machine-dependent uses such
as device drivers. Such code is
obviously and intentionally non¬
portable.

Allow System-Dependent C.
The standard similarly avoids
any deprecation of system-depen-

The Best 68000 & 32000 Compilers

GUARANTEED

OEMs; You get an unconditional 30 day money
back guarantee that our compilers generate faster
and smaller code than any other corresponding
68000 or 32000 industry standard compiler.

All compilers include 1 year of maintenance and
updates.

C - FORTRAN 77 - Pascal

Available NOW for:

Motorola 68000, National 32000

UNIX 4.2 BSD, UNIX System V

_^Green Hills Software
P.O. Box 91030 • Pasadena, CA 91109 • (818) 796-6543

Leaders in stamping our vaporware and pujfware.

UNIX is a trademark of AT&T Bell Laboratories

Circle No. 267 on Inquiry Card

58 UNIX REVIEW SEPTEMBER 1985

NAME IK MOST
WDflyUSID
MTEGRAIID

OFFKE AinOMAHON
SOfTWUEIOR
UNDCSYSIEMS.
”UNnixr

YQiniEGorm
User satisfaction is the primary reason no other product can

make this claim. Already in its second generation, UNIPLEXII

offers features designed to meet the requirements of the most

demanding user.

The beauty of UNIPLEX II is its simplicity. One personality and

one command structure throughout the program provide an ease

of use never before experienced with UNIX application software.

UNIPLEX II integrates sophisticated word processing,

spreadsheet, and relational database applications into a

powerful one-product solution.

UNIPLEX II uses termcap, so it can run on virtually any

computer terminal. “Softkeys" allow the user to define function

keys which are displayed on the 25th line of most terminals to

provide versatility and ease of use.

All this at a price you’d normally pay for a single application

software package.

UNIPLEX II is available immediately from UniPress Software,

the company that’s been at the forefront of quality UNIX

software products longer than anyone else.

Call today! Once you’ve got it, you’ll see why UNIPLEX II is

the most widely used Integrated office automation software for

UNIX-based systems.

OEM terms available. Mastercard and Visa accepted!

Write to: UniPress Software, 2025 Lincoln Hwy., Edison, NI08817

or call: 1-800-222-0550 (outside NO or 201-985-8000 On

Telex: 709418. European Distributor: Modulator SA, Switzerland

41 31 59 22 22, Telex: 911859.

UNIX Is a irademark of ATftT Bell Laboratories. Uniplex II Is a trademark of Uniplex Integration Systems.

ART

InlPfcss^tuuore
)bur Leading Source for UNIX'Softme

Circle No. 291 on Inquiry Card See us at UNIX EXPO, New York, Booth #300

PROGRAMMERS’ CPROGI
DBMS

clbJ/ISTA
PREFERRED
over ISAM
and file utili¬

ties, POWER
likeamainframe

DBMS, PRICE like a
microcomputer utility,

PORTABILITY like only
C provides.

MS-DOS/UNIX

db_VlSTA FEATURES
■ Written in C for C.
■ Fast BMree indexing method.
■ Maximum data efficiency using

the network database model.
■ Multiple key records—any or all

data fields may be keys.
■ Multi-user capability.
■ Transaction processing.
■ Interactive database access utility.
■ Ability to import and export

dBASEII/llland ASCII files.

■ 90 day extended application
development support.

NO ROYALTIES
SOURCE CODE INCLUDED

db_Vl5TA PRICE
Single user without source $195
Single user with source $495
Multi-user without source $495
Multi-user with source $990

MC/VISA/COD
30 DAY MONEY BACK GUARANTEE

Available for the Lattice. Microsoft.
Computer Innovations. DeSmet.

Mark Williams, and Aztec C compilers
under MS-DOS. and most UNIX systems.

DISCOUNTS ON ALL
LATTICE PRODUCTS

R4IMk
CORPORATION

11717 Rainier Avenue South
Seattle, WA 98178, USA

(206)772-1515 Telex 9103330300

CALL TOLL-FREE
1-800-843-3313

At the tone, touch 700-992.

Circle No. 266 on Inquiry Card

60 UNIX REVIEW SEPTEMBER 1985

C STANDARDS

User programs that

conform to the

Kernighan and Ritchie

description of C should

continue to compile

and execute as before.

dent code. ANSI C will be avail¬
able for writing applications
under MS-DOS, UNIX, or any
other system. Such applications
may take advantage of any and
all system-dependent features in
their environment.

On the other hand, the stan¬
dard should: Provide a Fighting
Chance for Portability. The
standard presents an itemiza¬
tion of implementation-depen-
dent, unspecified, and undefined
constructs. Well-formed pro¬
grams that avoid these constructs
will be portable to any ANSI C
environment, under any operat¬
ing system.

In particular, the committee
has specified a library that will
perform identically on any host
system. It is a proper subset of the
UNIX library standardized by
/usr/group and more recently by
the IEEE committee PI003.

Most of these principles can be

Most of the discussion

is judged against the

shared “spirit of C".

summed up in one phrase: Pre¬
serve the Spirit of C. Most
X3J11 members feel that C does
not need any “fixing”—that it is
successful and popular precisely
because it is powerful, simple,
and elegant. At the meetings of
the group, most of the discussion
is judged against the shared
“spirit of C” rather than the
interests of specific vendors. As a
result, no “factions” have devel¬
oped so far among X3J11. Argu¬
ment has sometimes been heat¬
ed, but the “sides” have proven to
be fluid from one question to the
next, and issues have been
resolved by creative solution
more often than by political
compromise.

VALUE TO IMPLEMENTERS

The (draft) standard will pro¬
vide several benefits to imple-
menters of C compilers and inter¬
preters. One is a clarity achieved
through the resolution of gray
areas. For example, the timing of
side-effects is specified by certain
“sequence points”.

The draft also gives implemen-
ters greater opportunities for
efficiency. Until now, the genera¬
tion of optimized code has been
hampered by an uncertainty re¬
garding method vs. result. For
example, if cl, c2, and c3 are
char variables, the expression
cl = c2 + c3 involves what K&R
called “usual arithmetic conver¬
sions”: this widens the char val¬
ues to int before the addition. The
draft describes the result seman¬
tics in terms of a hypothetical
abstract machine, one which la¬
boriously executes every oper¬
ation exactly as written. A real
implementation is then free to
achieve the specified result with a
method that is more efficient. In
the example above, the “usual
arithmetic conversions” would be
taken to specify the result rather
than the method; an optimizing
compiler thus might avoid widen-

TEXT EDITING

Another in a series of
productivity notes on
software from UniPress.

Subject: Multi-window,
full screen editor.

Multi-window, full screen editor
provides extraordinary text
editing. Several files can be edited
simultaneously, giving far greater
programming productivity than vi.
The built-in MLISP"'programming
language provides great
extensibility to the editor.

/

NEW RELEASE

UNIPRESS
EMACS
EDITOR FOR: UNIX'/
VMS'/MS-DOS'

New Features:

■ EMACS is now smaller and
faster.
■ Sun windows with fonts and
mouse control are now provided.
■ Extensive on-line help for all
commands.
■ Overstrike mode option to
complement insert mode.
■ New arithmetic functions and
user definable variables.
■ New manual set, both tutorial
and MLISP guide.
■ Better terminal support,
including the option of not using
unneeded terminal drivers.
■ EMACS automatically uses
terminal's function and arrow keys
from termcap and now handles
terminals which use xon/xoff
control.
■ More emulation-TOPS20 for
compatibility with other EMACS
versions, EOT and simple
Wordstar" emulation.

Features:

■ Multi-window, full screen
editor for a wide range of UNIX,
VMS and MS-DOS machines.
■ “Shell windoyvs" are support¬
ed, allowing command execution
at anytime during an edit session.
■ MLISP programming
language offers extensibility for
making custom editor com¬
mands! Keyboard and named
macros, too.

■ “Key bindings" give full
freedom for defining keys.
■ Programming aids for C,
Pascal and MLISP: EMACS
checks for balanced parenthesis
and braces, automatically indents
and reformats code as needed. C
mode produces template of
control flow, in three different
C styles.
■ Available for the VAX" (UNIX
and VMS), a wide range of 68000
machines, AT&T family. Pyramid,"
Gould," IBM-PC," Rainbow" 100+
and many more.

Price:

VAX/UNIX
Binary Source

$995
VAXJVMS $2500 7000
68000/UNIX 395 995
MS-DOS 325 995

For our Free Catalogue and
more information on these and
other UNIX software products,
call or write:
UniPress Software, Inc.,
2025 Lincoln Hwy,
Edison, NJ 08817.
Telephone: (201) 985-8000.
Order Desk: (800) 222-0550
(Outside NJ). Telex: 709418.
European Distributor:
Modulator SA, Switzerland
Telephone: 4131592222,
Telex: 911859.

OEM terms available.
Mastercard/Visa accepted.

Trademwks ot: UnPiess [MACS S, MLISP. UnPms Soilwm, Ik ; UNIX. ATiJ
Bel Latxnlones: VAX/VMS t ftinbow 100+ DvOI [puipmenl Cvp. MSDOS.
MaosollCvp. WontSUr. McmPro. Pynmid. Pyramid. Godd. Codd

Circle No. 248 on Inquiry Card
SoPtujorG
)tur Leading Soufce for UNIX‘Software

See us at UNIX EXPO, New York, Booth #300

C STANDARDS

ing the char values if it would
mean producing more efficient
code.

Another arena for greater
optimization is single-precision
arithmetic (such as float arith¬
metic). The draft allows imple¬

mentors to make more use of
single-precision, thus allowing C
to show better performance in an
important class of engineering
applications.

Implementers have had diffi¬
culty introducing optimizations

such as “common subexpression
elimination” because C is often
used for device drivers and
control applications, where ac¬
cess to memory-mapped locations
should not be “optimized away”.
The draft provides a volatile type
modifier for variables that must
be accessed exactly as written.
Everything that is not volatile

is then fair game for all-out
optimization.

The draft allows an implemen¬
tor to provide a “safe” macro (one
that evaluates each parameter
once) for each library function, in
addition to an executable object-
code version in the library. This
can yield significantly faster ex¬
ecution times in some cases. In
fact, it allows any library func¬
tion to be treated by the compiler
as a built-in function for the
direct generation of optimal as¬
sembler code.

A standard for C will provide a
fixed target for implementa¬
tions. Vendors will be able to
allocate resources more confi¬
dently to the development of a C
compiler once they know just
what that compiler is supposed to
do.

VALUE TO PROGRAMMERS

The opportunity for highly por¬
table code is an important bene¬
fit of the new standard. Existing
compilers have had slightly dif¬
ferent features, slightly different
implementations, and slightly
different libraries.

Program reliability will benefit
from stricter checking. The stan¬
dard provides a means for declar¬
ing the types of function param¬
eters, allowing the compiler itself
to check the agreement of argu¬
ments and parameters. (Previous¬
ly, lint was needed for this job.)
Another type of checking is pro¬
vided by the new const keyword,
which indicates that a variable is
read-only and should not be modi¬
fied. (This allows a compiler to

Basmark BASIC

The first

IBMS^PC Compatible
BASIC Compiler

for UNIX®

Available now:

• VAX®
• Intel® 80286, 8086
• Motorola® 68000

- OEM/Distributor inquiries invited
Binary/Source licenses available

Basmark Corporation
1717 East Ninth • Cleveland, Ohio 44114

Motorola is a registered trademark of Motorola Incorporated, VAX is a registered
trademark of Digital Equipment Corporation, IBM is a registered trademark of
International Business Machines Corporation, UNIX is a registered trademark of AT&T
Bell Laboratories, Incorporated. Intel is a registered trademark of Intel Corporation.

62 UNIX REVIEW SEPTEMBER 1985 Circle No. 271 on Inquiry Card

target const data for ROM or
write-protected memory.)

Important as these advantages
are, though, programmers most
of all will appreciate the opportu¬
nities for greater efficiency that
the standard promises.

FURTHER INFORMATION

For a point-by-point summary
of the differences between K&R
Appendix A and the ANSI draft
standard, see the 1985 issues of
The C Journal, PO Box 849,
Denville, NJ 07834; 201/989-
0570.

The textbook Reliable Data
Structures in C (Plum Hall, 1985)
discusses a programming style
that works with current compil¬
ers and anticipates the enhance¬
ments of ANSI C.

The opportunity for

highly portable code is

an important benefit of

the new standard.

Further discussion of the draft
standard has appeared in /c: The
Journal for C Users, Que Corpo¬
ration, 7999 Knue Rd., Indiana¬
polis, IN 46250.

To join X3J11 or to request
information on the status of ANSI
C, contact Thomas Plum, Vice-
Chair X3J11, Plum Hall Inc.,

1 Spruce Avenue, Cardiff, NJ
08232; 609/927-3770.

The 1985 C Information Bul¬
letin can be obtained by sending a
$20 check payable to “X3 Secre¬
tariat” and a self-addressed mail¬
ing label to:

C Language Bulletin
X3 Secretariat/CBEMA
311 First St NW, Suite 500
Washington DC 20001

Thomas Plum is Chairman of
Plum Hall Inc., and author of
several books on the C language. As
Vice-Chair of ANSI committee
X3J11, Dr. Plum is designated by

the committee to handle communi¬
cations with the public. This article,

however, is not an official publica¬
tion of ANSI X3J11. ■

V ' /

Another in a series
productivity notes on
software from UniPress,

/ y
Subject: C Cross Compiler
for the 8086 Family.

The Lattice C Cross Compiler
allows the user to write code on a
VAX"^ (UNIX or VMS'V orMC68000'^*
machine for the 8086 family. Lattice C
is a timesaving tool that allows a more
powerful computer to produce object
code for the IBM-PC"*. The compiler
is regarded as the finest C compiler
for the 8086 family and produces the
fastest and tightest code.

- / -

/

■ For your UNIX or VMS Computer. ■ Use your VAX or other UNIX
machine to create standard Intel ob¬

ject code for the 8086 (IBM-PC). ■ Highly regarded compiler pro¬
duces fastest and tightest code for
the 8086 family ■ Full C language and standard
library, compatible with UNIX. ■ Small, medium, compact and
large address models available. ■ Includes compiler, linker, librarian
\nd disassembler.

SOST'* floating point support
MS-DOS^’* 2.0libraries.

■ Send and Receive communication
package optionally available.
Price $500. ■ Optional SSI Intel Style Tools.
Package includes linker, locator and y

assembler and creates executables '' ,
for debugging on the Intel workstation X
or for standalone environments.
Price $8,550.

. /A [

VAX(UNIXorVMSf ' y
MC68000 ^

$500()
3000

CROSS COMPILER
FOR THE 8086‘FAMILY

LATTKEC
For more information on these and

other UNIX software products, call or
write: UniPress Software, Jnc.., 2025
Lincoln Hwy, Edison, NJ 08817.
Telephone: (201) 985-8000. Order
Desk: (800) 222-0550 (Outside NJ).
Telex: 709418. Japanese Distributor:
Softec 0480 (85) 6565. European Dis¬
tributor Modulator SA (031) 59 22 22.

OEM terms available.
MastercardfVipa accepted.

y X

Imiemainol L^lte Ik VAX ana VMS Oxyiai Equaifneni Cyp
UMX AW Bel LaOvaiyiK IBM PC mitttWionai Busmeti Machmei
MS DOS MKfOiolt (AC660QC lAmoia 6

Circle No. 275 on Inquiry Card

/.

iSoftujQre
)bur Leading Source lor UNIX Software

See us at UNIX EXPO, New York, Booth #300

Computers are getting faster,
smaller, and cheaper. There is,
however, a physical limit to the
speed and size that computers
can attain. As chips get denser,
the thickness of the layers that
make them up are measured in
atoms and the limiting factor
becomes the speed of light. Chip
technology is rapidly approaching
that limit.

True to form, though, people
want machines that run faster.
What to do? One increasingly
popular approach is to break
down the problems that comput¬
ers solve into tasks that can be
executed in parallel (simulta¬
neously), and spread the work
over several processors. Any one
of the processors can only work so
fast, but by combining their ef¬
forts, the task at hand can be
completed in less time as mea¬
sured by the clock on the wall.

There is much to suggest that
parallel processing will be the
wave of the future. But no two
manufacturers seem to have the
same idea of what parallel pro¬
cessing is.

In this month’s column, 1 ex¬
plain my understanding of paral¬
lel processing by defining many of
the terms that describe and dis¬
tinguish parallel processors. Next
month, 1 will discuss the charac¬
teristics that separate several
parallel processor machines al¬
ready on the market.

INDUSTRY
INSIDER

The wave of the future

by Mark G. Sobell

RELATING PARALLEL
PROCESSING TO UNIX

A multiprocessor simply is a
computer containing more than
one processor (CPU). This should
not be confused with a multicom¬
puter. The difference is that a
multiprocessor machine has glo¬
bal memory that all its processors
can access while a multicom¬
puter has local memory for each
processor. Because the proces¬
sors in a multiprocessor environ¬
ment share memory, their func¬
tions, specifically their access to
memory, must be closely con¬
trolled. Processors working with¬
in a multicomputer do not require
this close supervision.

UNIX, meanwhile, is a multi¬
programming operating system
because it can run several unre¬
lated programs concurrently. On
a conventional single-processor

implementation of UNIX, “con¬
current” does not mean “simul¬
taneous”; it only signifies that the
CPU appears to be executing
programs simultaneously from
the perspective of users and pro¬
grams. In truth, though, the CPU
actually works on only one pro¬
gram at a time.

People also call UNIX a multi¬
tasking operating system. That’s
because the system allows single
jobs to be composed of several
tasks working in conjunction
with one another. A pipe is one
method by which tasks can be
joined within a job. Under System
V, shared memory and other
types of interprocess communica¬
tion are also possible.

Making use of these terms,
you can say that parallel process¬
ing is “multitasking in a multi¬
processing environment”. When
UNIX is implemented on a mul¬
tiprocessor, “concurrent” sud¬
denly can mean “simultaneous”.

As an example, assume you
have a job that runs tasks A, B,
and C. The tasks are connected
by pipes so the output from A goes
to B and B’s output goes to C.
When you run the job on a single¬
processor computer, all three
tasks will appear to be running
simultaneously, but the processor
can only work on one of these
tasks at a time: thus you have
multitasking in a single-proces¬
sor environment. When you run

64 UNIX REVIEW SEPTEMBER 1985

the job on a multiprocessor com¬
puter, all three tasks can actually
run at the same time, each
on a difTerent processor. This is
nothing other than multitasking
in a multiprocessor environment:
parallel processing. With all else
being equal, the computer should
spit out an answer almost three
times as fast.

Because of its multitasking
capabilities, UNIX is a natural
vehicle for parallel processing.
Many applications that run under
UNIX are already structured so
that they can exploit a multi¬
processor environment.

INTERPROCESS
COMMUNICATION AND
SYNCHRONIZATION

When several tasks (processes)

There is much to

suggest that parallel

processing will be the

wave of the future.

are working toward a common
goal, they usually need a way to
share information. When the
tasks make use of global memory,
the simplest and most efficient
way for them to communicate
is through shared memory. Other
mechanisms, such as signals,
can be used where there is no
global memory or where it is

inappropriate to use shared
memory.

A semaphore is a data struc¬
ture that resides in shared mem¬
ory and coordinates the actions of
several tasks. The simplest sema¬
phore is a lock, which is used to
ensure exclusive access to a
shared data structure. The need
for a lock is illustrated by the
classic example of two people
trying to update an inventory
database at the same time. With¬
out a lock, the two users find
when they access the database
simultaneously that there is only
one of a particular part left in
stock. Both users then could con¬
ceivably sell the same part with¬
out being alerted to the actions of
the other. That won’t be good for
either their customers or their

Another in a series of
productivity notes on UNIX^
software from UniPress.

Subject: Powerful spreadsheet with
NEW ADDED FEATURES,

Q-Calc is an extraordinary spreadsheet
for UNIX including extensive math
and logic facilities, comprehensive
command set, optional graphics,
many new ease-of-use features, and
the ability to run UNIX programs on
spreadsheet data.

Features:

■ Fast spreadsheet with large model
size, allowing sorting and searching.
■ Interfaces with UNIX and user
programs via pipes, filters and sub¬
processes. Data can be processed
interactively by UNIX.
■ Q-Calc profile mechanism allows
the user to store default Information,
as well as support for terminal-specific
profiles. Uses termcap.
■ Graphics for bar and pie charts.
Several device drivers supported.
■ New Features of Version 3.2
include more powerful printing,
simpler data input, keybinding
definitions, new string operator,
bind-to-key, and more.
■ Available for the VAX'^, Sun^,
Masscomp^, AT&T 3B & 7300 Series,
Pyramid^, Plexus^, GoulcP*, Cadmus^,
Integrated Solutions'^, Cyb"*, IRIS"*,
Callan"*, and many more.

^admarta ot: UNIX. Am Ben LaOoratonas. VAX. Digital Equifinml
Cofp: Sun. Sun Mkmsysttms: Masscomp. Masscomp: CYB. CYB
Systems: Plexus. Plexus Computer; GouU. GouU: Pyramid. Pyramid:
Integrated Solutions. Integrated Solutions: IBIS. Silicon GrapMcs:
Cadmus. Cadmus Computer; Callan. Cattan Data Systems; MC68000.
Motorola Corp.

SPREADSHEET

Price:

Binary
VAX, Pyramid, AT&T 3B/20 $2500

(with graphics) 3500
MCBdOOO^ 750

(with graphics) 995
Source Code Available.

For our Free Catalogue and more
information on these and other UNIX
software products, call or write:
UniPress Software, Inc.,
2025 Lincoln Hwy., Edison, NJ 08817.
Telephone: (201) 985-8000.
Order Desk: (800) 222-0550
(Outside NJ). Telex: 709418.
European Distributor: Modulator SA,
Switzerland Telephone: 413159 22 22,
Telex: 911859.

OEM terms available.
Mastercard/Visa accepted.

5oftuuQr0
)bur Leading Source lor UNIX'''Softwafe

See us at UNIX EXPO, New York, Booth #300 Circle No. 269 on Inquiry Card

INDUSTRY INSIDER

database (which will not be accu¬
rately updated). (These users inci¬
dent ly would need a lock even if
they were working in a single-
processor environment.)

With a lock, the first user
reporting a sale would get the part
while the other would get a “Sor¬
ry, Charlie” message. That’s be¬
cause when a user updates a
database, the software attempts
to lock the data structure (in this
case, the record pertaining to the
hotly pursued part). If the lock is
successful, the data structure will
be updated and unlocked. If the
lock is not successful, it means
that the data structure has al¬
ready been locked by another
process. The second process will
have to wait until the structure is

UNIX
JOBS

REGISTRY
National registry of candi¬
dates and jobs in the Unix
field. Please give us a call;
send a resume; or request a
free Resume Workbook &
Career Planner. We are a
professional employment
firm managed by graduate
engineers.

800-231-5920
P.O. Box 19949, Dept. UR

Houston, TX 77224
713-496-6100

o Scientifk: Placement, Inc

Circle No. 270 on Inquiry Card

66 UNIX REVIEW SEPTEMBER 1985

unlocked before it can put on a
lock of its own. That way, even if
there arc no parts left by the time
the second user puts a lock on the
record, the user at least will be
advised.

WHY PARALLEL PROCESSING?

All right, so parallel process¬
ing can speed things up, but is
it worth the added program¬
ming and hardware complexity
required to support it? Aside from
speed, what advantages do manu¬
facturers attribute to parallel pro¬
cessing? One often cited is a
better price/performance ratio in
certain applications. When you
price individual processors, fast
ones are much more expensive
than slow ones. Multiprocessors
allow you to satisfy your require¬
ments for computational power
by combining less expensive,
slower processors.

A second reason is fault tol¬
erance. Where single-processor
machines can be set up to switch
to a backup disk drive or printer
in the event of a component
failure, multiprocessors also
can switch to a different proces¬
sor. The result is a system that is
potentially tolerant of CPU
failure.

A third point on which paral¬
lel processing manufacturers ex¬
pound is the capacity of their
machines to grow in modular
fashion. With a system that sup¬
ports multiple processors, you
can start small and increase
the capacity of your system
as requirements dictate—adding
CPUs in just the way you add disk
drives to a single-processor
system.

So why hasn't anyone come up
with a parallel processor before
now? Peter Patton in the June
1985 issue of IEEE Computer
answered the question this way:
“While the world around us

works in parallel, our perception
of it has been filtered through 300

years of sequential mathematics,
50 years of the theory of algo¬
rithms, and 28 years of Fortran
programming.”

The question that comes from
this discussion is: now that
we are building multiprocessors,
what kinds of tasks are best
suited to parallel processing?
Basically, any set of independent
processes is a good candidate
for parallel processing. More re¬
search is required to determine if
jobs or parts of jobs can be broken
down into computational chunks
that also can be processed in
parallel. Recent studies have sug¬
gested that the following opera¬
tions would benefit most from
this sort of single-job parallel
processing:

• matrix operations.

• image processing and
generation.

• signal processing.

• sorting and searching.

Next month. I'll look at how
some manufacturers propose to
service these sorts of parallel
processing needs.

If you have an item appropri¬
ate for this column, you can
contact Mr. Sobell at 333 Cobalt
Way, Suite 106, Sunnyvale, CA
94086.

Mark G. Sobell is the author of
the bestselling book, “A [Practical
Guide to the UNIX System'' (Ben¬
jamin/Cummings, 1984) and the

new “A Practical Guide to UNIX
System V" (Benjamin/Cummings,

1985). He has been working with
L 'NIX for over fiue years and
specializes in documentation con¬

sulting and troff typesetting. Mr.

Sobell also writes, lectures, and
ojfers classes in Advanced Shell
Programming and awk. ■

Mr. Sobell wishes to thank Sequent Computer
Svstems. Ine.. for the assistanee it jDroviclecl in
the development of this article.

HANDS-ON TRAINING THAT ISN’T SECONDHAND
When you leam the UNIX^“ System directly from
AKcT, you leam it from the people who develop it. So
all the information you get is firsthand.

For over fifteen years, we’ve been teaching our peo¬
ple to use the UNIX System—which makes us the best
trained to help you leam.

The best training starts at your own terminal. That’s
why, at AT&T each student gets the use of an individual
terminal for real hands-on training.

Take your pick of courses from our extensive cur¬
riculum. Whatever your level of expertise, from first¬
time user to system developer, we
have a course that will suit your
individual needs. And all our
courses are designed to teach you
the specific skills that will soon

I-1
Yes, rd like some firsthand information
on all UNIX System training courses.

©1985 AT&T Information Systems.

Name

have you using the UNIX System to organize and expand
your computing system for maximum efficiency.

You also get experienced instmctors, evening access
to training facilities, and your choice of training centers.
We can even bring our courses to your company and hold
the training at your convenience.

And because we are continually expanding our courses
to incorporate the developments of UNIX System Y,
you’re assured of always getting the most up-to-date
information.

So take your training from AT&T. And discover the
power of UNIX System V—right
from the source. Call us today
to reserve your seat or for a
free catalog.
1-800-221-1647, Ext. 355.

Title

Company

Address

City State Zip

Call 1-800-221-1647, Ext. 355
or send coupon to:

AT&T Information Systems
PO. Box 45038, Jacksonville, FL 32232-9974

AT&T
The right choice.

L, ,J

c
ADVISOR

Calling Fortran and Pascal from C (and vice-versa)

by Bill Tuthill

Europeans and academics de¬
vise new programming languages
all the time—academics because
it gives them a convenient re¬
search topic, Europeans because
they seem to enjoy living beneath
a Tower of Babel. But only a few
languages really catch on: For¬
tran for scientists, COBOL for
business programmers, BASIC
for hobbyists. Lisp for AI re¬
searchers, Pascal for students,
and C for system programmers.
This is not to say these languages
are better than new ones coming
along. It's just that most new
languages aren't so much better that they're worth
learning.

r^erkeley UNIX provides all the popular languages
listed above, except COBOL and BASIC. In addition,
it includes a rather poor implementation of APL.
'fhe C, Fortran, and Pascal compilers all use the
.same backend—they share code generator, assem¬
bler, and loader—so routines from the three
languages can be combined. This column discusses
methods for doing so. Note that System V has no
Pascal, .so remarks made here about Pascal do not
pertain to AT<SfT UNIX systems.

C AND FORTRAN

The f77 compiler was written at Bell Labs by Stu
Feldman (and Peter Weinberger), and distributed for
I lie first time on Version 7. Dave Wasley of UC
Berkeley improved the Fortran interface to UNIX,
and various other people fixed bugs and worked on
speed improvements. The contributions of Don
Seeley, now at the University of Utah, are most
notable. vSystem V includes much of the work done
at Berkeley and elsewhere.

One reason Fortran continues to be .so widely

used is that it provides mathe¬
matical and statistical libraries,
such as IMSL, Linpack, Eispack,
and Harwell. C programmers may
have occasion to call routines in
these libraries. Conversely, For¬
tran programmers working in a
UNIX environment may want to
call C library routines and UNIX
system calls from inside Fortran
programs.

In Fortran, parameters are
passed by reference (or address),
rather than by value, as in C.
Thus, you need to put an amper¬
sand (&) in front of most param¬

eters when calling Fortran routines from C. The f77
compiler appends an underscore to the names of
common blocks, functions, and subroutines in
order to distinguish them from C routines or
external variables of the same name. This is done
because of the different parameter passing conven-
t ions. Data types in the two languages correspond in
the ways outlined in Figure 1. A Fortran function re¬
turning type integer, logical, or double precision
returns the same type as the corresponding C
function. Note that C functions cannot return a
float because it would be promoted to double first. A
complex or double complex function is equivalent
to a C function with a first argument pointing to the
address of the return value. So:

complex function f(...)

in Fortran is equivalent to:

f_(temp. ...)

struct float r. i;j *temp;

in C. Furthermore, a Fortran function returning a

68 UNIX REVIEW SEPTEMBER 1985

Fortran C

integer*2 x short X:
integer x long X:

logical x long X;

real x float X:

double precision x double X:
complex X struct {float r. i: } X:

double complex x struct {double r. i*. } X;

character*16 x char x[16]:

Figure 1 — The ways in which Fortran and C data

types correspond.

character variable is equivalent to a C function with
two initial arguments giving the data address and
length. Thus:

As stated above, all Fortran arguments are
passed by reference. Also, character parameters
require a trailing argument giving the length of the
string. Thus, the Fortran call:

external func

character's str
integer nuin(3)

call sani(func. num(2). str)

is equivalent to the C call:

int fun(L_():
char str[8]:
long num[3]:

sa(ii_tfunc_ . &nuni[1]. str. 8L)

character*14 function g(...)

in Fortran is equivalent to:

g_{result. length. ...)
char result[]:
long length:

in C, and could be invoked in C as follows:

char chars[15]:

gjchars. 15L. ...):

‘^include (stdio.h)

long unixcmcUcmd. cmdlen) /* execute UNIX command */
char *cmd;
long cmdlen:

char buf[BUFSIZ]:

if (cmdlen >= BUFSIZ)
return(-2L):

strncpy(buf. cmd. cmdlen):
/♦

* Fortran strings blank-padded so insert NULL
V

buf[cmdlen] = NULL:

if (system(buf) == 127) /* couldn't exec shell */

return(-IL):
return(OL):

Figure 2 — An example of how to execute a UNIX

shell command from inside a Fortran program.

The string is eight characters long. Note that C
arrays are indexed beginning at zero, whereas
Fortran arrays begin at one, so we must pass num(2)

to the Fortran subroutine, but num[l] to the C
function. Two-dimensional arrays can be a stum¬
bling block, because C arrays have row-major
ordering, while Fortran arrays have column-major
ordering. In other words, Fortran stores array
elements with the first subscript varying most
rapidly, while C stores them with the final subscript
varying most rapidly.

The Fortran I/O library is implemented on top of
C s standard I/O library. Every open unit in a
Fortran program has an associated FILE structure.
The stdin, stdout, and stderr streams are easy to
share because they don’t require explicit references,
but other streams (units) opened from Fortran are
difficult to share, although it can be done by writing
a C routine such as getfdO to ascertain the file
descriptor.

Let’s suppose we want to execute a UNIX shell
command from inside a Fortran program. There’s
already a library routine, system(3f), for doing this.
But for the sake of an example, let’s change the
name and code the routine in C as shown in Figure
2. Note the underscore appended to the function
name. To call this routine from Fortran, all we need
is something like:

call unixcmdCls -1’)

We place the unixcm(L() routine in a file named
unixcmd^.c, and compile the Fortran program and
the C code as follows:

7o f77 prog.f unixcmcL .c
% a.out

UNIX REVIEW SEPTEMBER 1985 69

U C ADVISOR

The Fortran compiler knows how to deal with C
programs. We execute the program by typing a.out.

Suppose we wanted to do the opposite—call a
Fortran library routine from a C program. This
would be a fine idea if we needed a mathematical
function available only in some particular Fortran
library. For the sake of simplicity, let’s use a Fortran
function to compute the area of a circle, given the ra¬
dius. The function is coded like this:

double precision function area(r)

double precision r

area = 3.1415926535897932 ♦ r**2

return

end

A hint: most C compilers don’t deal gracefully with
single precision functions and parameters, so you’re
better off using double precision Fortran library
routines. From a C program, we could call the
routine in this way:

double r. area. area_():

r = radius:

area = area_(&r);

Again, note the appended underscore. We have to
pass the address of the parameter, rather than its
value, because Fortran employs call by reference.
The Fortran function would need to be compiled, so
that the C program can be compiled and loaded like
this:

% f77 -c area.f

% cc prog.c area.o -1F77 -1177 -1U77 -Ic -Im

% a.out

The libraries are, in order: the Fortran intrinsic
library, the Fortran I/O library, the Fortran UNIX
interface library, the standard C library, and C's
math library. Not all are required by our example,
but the safe approach is to use all of them every
time. As before, we execute the program by typing
a.out.

C AND PASCAL

The Pascal interpreter pi and interpreter/exe-
cuter pix were written mostly by Bill Joy, with help
from Chuck Haley and Susan Graham. The inter¬
preter generates p-code rather than machine
language, and thus is not compatible with the C
compiler. Berkeley’s 4.1 release was the first to
include the Pascal compiler pc. written by Kirk
McKusick and Peter Kessler. To my knowledge,
Pascal is not included on any release of System V
from AT&T.

Pascal C

real double

integer int

-32768..32767 short

boolean char

char char

record struct/union

array array

Figure 3 — The ways in which Pascal and C data

types correspond.

In Pascal, variables are passed by value, unless
otherwise specified as var parameters. In a sense,
this is true of C as well: all variables except arrays
are passed by value, unless preceded by an
ampersand, to indicate they are passed by refer¬
ence. Pascal and C routines, because they have
similar parameter passing conventions, are not
differentiated by name, as Fortran routines are
distinguished from C by the appended underscore.
To pass by reference, Pascal programs use var
parameters, while C programs declare a pointer
type. So the Pascal procedure:

procedure incr(var n: integer);

begin

n = n + 1

end;

corresponds to the C routine:

incr(n)

int *n:

I

♦n += 1:
I

In fact, if the C routine above already existed
somewhere, the Pascal routine could have been
written like this:

procedure incr(var n: integer):

external:

and Id would link the appropriate C routine. A table
of the correspondences between Pascal and C data
types is shown in Figure 3.

Suppose we wanted to execute a UNIX shell
command from inside a Pascal program. This is
easier in Pascal than in Fortran, because we don’t
need a wrapper routine precoded in C. A program
that calls the C library routine, systemQ is shown in
Figure 4.

Not all Pascal implementations pad strings with

70 UNIX REVIEW SEPTEMBER 1985

,2? C
O

’

CLEO Software
a division of Phone 1. Inc
1639 North Alpine Road
Rockford, IL 61107
TELEX 703639

IS vour
SNAor BSC Gateway

Connect your IBM. Apple. Tandy.
Zenith. A.T.&T., Hewlett-Packard.
Televideo, NCR, IMS, SUN. or other
DOS or UNIX-based system to
another micro or to your mainframe
with CLEO Software.

Now you can connect your PC LAN. too!

For details call: 1(800) 233-CLEO
In Illinois 1(815) 397-8110

CLEO and 3780PIus are registered trademarks of CLEO Software.

Circle No. 298 on Inquiry Card IBM is a registered trademark of international Business Machines Corporation; Apple is a registered trademark
of Apple Computer; UNIX is a registered trademark of A.T.ST. Tfechnologies. Inc.

UC ADVISOR

blanks; UCSD Pascal uses counted byte arrays
instead. To make string manipulation easier, some
Pascal compilers (such as Sun’s pc) have imple¬
mented the ISO standard for conformant arrays,
with the extension that literal strings will be null-
terminated when passed as conformant array value
parameters. This makes the program easier to code,
and more efficient, as demonstrated in Figure 5.

Unlike the Fortran compiler, the Pascal compiler
doesn’t know how to deal with C programs. In our
example, this is no problem, because we don’t have
to write a wrapper routine in C. But in programs
with complex data formats, wrapper routines are
often required. To compile and load such programs,
you have to invoke the C compiler, then the Pascal
compiler. Here’s how we would compile and run the
Pa.scal program above:

% pc list.p
% a.out

Pascal automatically includes all the standard C
library routines. We execute the program simply by
typing a.out.

Suppose, on the other hand, we wanted to call a
Pascal library routine from a C program. There
aren’t nearly as many good Pascal libraries as
Fortran libraries, but it’s possible that some
companies have developed Pascal libraries that will
someday need to be linked with C programs. Let’s
use the same example as with Fortran: a function to
compute the area of a circle, given the radius.
Remember that Pascal doesn’t have an intrinsic
power function, but with squares the work-around
is easy:

function area(r: real): real;

begin
area := 3.1415926535897932 * (r * r)

end:

From a C program, we could call this function as
follows:

double r. a. area():

r = radius:
a = area(r):

Note that we declare everything as double
precision, because most Pascal compilers don’t
have a data type for single precision. Here’s how to
compile the Pascal function and the C program:

% pc -c area.p
% cc prog.c area.o -Ipc -Im

% a.out

program list(input. output):
type string = packed array[1..512] of char:

var S: string:

procedure system(var cmd: string):

external:

begin | main |
s := Ts -1’: I Pascal strings are blank padded |
s[6] := chr(O): I so we put a NULL there, as in C]

system(s)
end.

Figure 4 — An example of how to execute a UNIX

shell command from inside a Pascal program.

program list(input. output):

procedure system(cmd: packed array[lb..ub: integer] of char);

external:

begin

system(Ts -T)

end.

Figure 5 — An example of how a UNIX shell
command can be executed from inside a Pascal program
using a Pascal compiler that has implemented the ISO

standard for conformant arrays.

We load the Pascal library, in case there are
writelnQ statements or something of the sort, and
we also load C’s math library. Our example requires
neither, but it’s best to be on the safe side. As before,
we execute the program by typing a.oat.

CONCLUSION

For ease of implementation and maintenance,
both the Fortran and Pascal compilers use the same
code generator, assembler, and loader as the C
compiler. This has a beneficial side-eflfect: routines
in the three languages are mutually callable.
Although not discussed here, Fortran also can be
called from Pascal, and vice-versa. This is an
example of the UNIX tool philosophy at work—a few
small tools that provide great flexibility and
functionality.

Bill Ihthill was a leading UNIX and C consultant at
UC Berkeley for four years prior to becoming a member
of the technical staff at Sun Microsystems. He enjoys a

solid reputation in the UNIX community earned as
part of the Berkeley team that enhanced Version 7 (4.0,

■LI, and 4.2BSD). ■

72 UNIX REVIEW SEPTEMBER 1985

V

A Complete Curriculum for; End Users • Management • Applications Staff • Technical Support
DALLAS &

COURSES LONDON BOSTON CHICAGO
SAN

FRANCISCO
LOS

ANGELES
NEW YORK 6
SOMERSET

TORONTO e
ORLANDO

WASHING¬
TON, D.C. TUITION

SEQUENCE
TUITION!

UNIX Overview Oct 8 85 Dec 17 85 Mar 11 86 Oct 15 85 Mar 11 86 Oct 1 85it Jan 28 86 Oct 1 85 $225' Dec 3 85 Mar 18 86 Jan 28 86 Feb 4 86 Apr 29 86 Dec 1 85
Feb 11 86 Apr 29 86 Apr 15 86 Jan 14 86
Apr 15 86 Mar 11 86 >

June 17 86 May 20 86 $860

UNIX Oct 9-11 85 Dec 18-20 85 Mar 12-14 86 Oct 16-18 85 Mar 12-14 86 Oct 2-4 85tt Jan 29-31 86 Oct 2-4 85 $735^ Fundamentals Dec 4-6 85 Mar 19-21 86 Jan 29-31 86 Feb 5-7 86 Apr 30-May 2 Dec 18-20 85 for Non-
Programmers*

Feb 12-14 86
Apr 16-1886
June 18-20 86

Apr 30-May 2
86

Apr 16-18 86 86 ^ Jan 15-17 86
Mar 12-14 86
May 21-23 86

UNIX
Fundamentals
for
Programmers*

Oct 14-16 85
Dec 9-11 85

Feb 17-19 86
Apr 21-23 86
June 23-25 86

Mar 31 -Apr 2
86

Mar 17-19 86 Oct 28-30 85
Feb 3-5 86
May 5-7 86

Mar 17-19 86 Oct 7-9 85tt
Feb 10-12 86
Apr 21-23 86

Feb 3-5 86
May 5-7 86

Oct 7-9 85
Jan 20-22 86
Mar 17-19 86
Jun 2-4 86

$735'

> $1125

Shell as a
Command
Language*

Oct 17-1885
Dec 12-13 85
Feb 20-21 86

Apr 3-4 86 Mar 20-21 86 Oct 31 -Nov 1
85

Feb 6-7 86

Mar 20-21 86 Oct 10-11
85tt

Feb 13-14 86

Feb 6-7 86
May 8-9 86

Oct lO-l 1 85
Jan 23-24 86
Mar 20-21 86

$490 >

Apr 24-25 86
Jun 26-27 86

May 8-9 86 Apr 24-25 86 June 5-6 86

‘C* Language
Programming*

Oct 21-25 85
Dec 16-20 85
Feb 24-28 86
Apr 28-May 2

86
Jun 30-July4

86

Apr 7-11 86 Sept 9-13 85
Mar 31 -Apr 4

86

Nov 11-15 85
Feb 10-14 86
Apr 12-16 86

Sep 9-1385
Mar 31 -Apr 4

86
Aug 4-8 86

Oct 21-25
85tt

Feb 17-21 86
Apr 28-May 2

Feb 10-14 86
Apr 12-16 86

Oct 21-25 85
Jan 27-31 86
Mar 31-Apr 4

86

$1225

86 Jun 9-13 86

Shell
Programming*

Sep 2-3 85
Oct 28-29 85
Jan 6-7 86
Mar 3-4 86

May 12-13 86

Apr 14-15 86 Sep 16-17 85
Apr 7-8 86

Nov 18-19
85tt

Feb 17-1886
May 19-20 86

Sep 16-17 85
Apr 7-8 86

Oct 28-29
85tt

Feb 24-25 86
May 5-6 86

Feb 17-1886
May 19-20 86

Oct 28-29 85
Feb 3-4 86

Apr 31 -May 1
86

Jun 16-17 86

$490 >1

> $1125

Using
Advanced
UNIX
Commands*

Sep 4-6 85
Oct 30-Nov 1

85
Jan 8-10 86

Apr 16-18 86 Sep 18-20 85
Apr 9-11 86

Nov 20-22 85
Feb 19-21 86
May 21-23 86

Sep 18-20 85
Apr9-ll 86

Oct 31 -Nov 1
85tt

Feb 26-28 86

Feb 19-21 86
May 21-23 86

Oct 30-Nov 1
85

Feb 5-7 86

$735 >

Mar 5-7 86 May 7-9 86 Apr 2-4 86
May 14-16 86 Jun 18-20 86

UNIX
Internals

Sep 9-13 85
Nov 4-8 85

Jan 13-17 86
Mar 10-14 86
May 19-23 86

Apr 21-25 86 Sep 23-27 85
Apr 14-1886

Dec 2-6 85
Feb 24-28 86
Jun 2-6 86

Sep 23-27 85
Apr 14-1886

Nov 11-15
85tt

Mar 3-7 86
May 12-16 86

Feb 24-28 86
Jun 2-6 86

Nov 11-15 85
Feb 10-14 86
Apr 14-18 86
Jun 23-27 86

$1375

UNIX
Administration*

Sep 18-20 85
Nov 11-13 85
Jan 22-24 86
Mar 19-21 86
May 28-30 86

Sep 10-12 85
Apr 29-May 1

86

Oct 1-3 85
Apr 22-24 86

Dec 10-12 85
Mar 4-6 86

Jun 9-11 86

Oct 1-3 85
Apr 22-24 86

Nov 19-21
85tt

Mar 11-13 86
May 20-22 86

Mar 4-6 86
Jun 9-11 86

Nov 19-21 85
Feb 18-20 86
Apr 22-24 86

$735

Advanced *C’
Programming
Workshop*

Sep 23-24 85
Nov 18-19 85
Jan 27-28 86
Mar 24-25 86

Sep 16-1785
May 5-6 86

Oct 7-8 85
Apr 28-29 86

Dec 16-17 85
Mar 10-11 86
Jun 16-17 86

Oct 7-8 85
Apr 28-29 86

Dec 2-3 85
Mar 17-1886
Jun 2-3 86

Mar 10-11 86
Jun 16-17 86

Dec 2-3 85
Feb 24-25 86
Apr 28-29 86

$490 >1

■ $1125 Jun 2-3 86

Advanced ‘C’
Programming
UncferUNIX*

Sep 25-27 85
Nov 20-22 85
Jan 29-31 86

Apr 2-4 86

Sep 18-20 85
May 7-9 86

Oct 9-11 85
Apr 30-May 2

86

Dec 18-20 85
Mar 12-13 86
Jun 18-20 86

Oct 9-11 85
Apr 30-May 2

86

Dec 4-6 85tt
Mar 19-21 86
Jun 4-6 86

Mar 12-14 86
Jun 18-20 86

Dec 4-6 85
Feb 26-28 86
Apr 30-May 2

$735 >

Jun 4-6 86 86

Berkeley
Fundamentals
and ‘csh’ Shell* 1

Sep 30-Oct 4
85

Nov 25-29 85
Feb 3-7 86

Apr 7-11 86

Sep 23-27 85
May 12-16 86

Oct 21-25 85
May 5-9 86

Jun 23-27 86 Oct 21-25 85 I
Feb 3-7 86
May 5-9 86

3ec9-1385tt ,
Mar 31 -Apr 4

86
Jun 9-13 86

Jun 23-27 86 Dec 9-13 85
Mar 3-7 86
May 5-9 86

$1225

Jun 9-13 86 ttNewYork
only

•Including hands-on training workshops ” UNIX is a trademark of Bell Laboratories tSavings for consecutive seminar dates

^LL FOR DETAILS ON: ON-SITE SEMINARS • VIDEO-BASED TRAINING • INTERACTIVE VIDEODISC TRAINING
lo reserve your seminar space now or for additional information, call: (800) 323-CJNlX or (312) 987-4084

Three factors make the Computer Technology Group the experts in UNIX and 'C
language training:

• Experience, through training thousan<ds of stu<dents worldwicde in live seminars,
with thousancis more using our vicieo training at their locations.

• Extensive Curricula Supporting All GMIX Versions, creating a client base of
manufacturers, software (developers an<d end users.

• Quality of Instruction, with instructors an<d course developers who are experts
In teaching UNIX and C, as well as In designing and implementing a variety of
UNIX-based systems.

COMPUTER
TECHNOLOGY

GROUP
Telemedia, Inc.

310 S. Michigan Ave., Chicago. IL 60604
The Leading Independent UNIX System

Training Company

Circle No. 251 on Inquiry Card

RULES
OF THE GAME

Just one of those things

by Glenn Groenewold

The very rieh are indeed dif¬

ferent from you and me, as Scott
Fitzgerald is supposed to have
observed. Long before the rest of

us, they were aware that matters

of money and property must

not be left to chance. Thus mar¬
riages among the wealthy invari¬
ably have been preceded by
antenuptial agreements. These
legal documents carefully have

defined who was to own what so
that family fortunes and busi¬
ness interests would not be
diluted through inheritance, im¬

providence, or—unthinkable to

the hoi polloi—divorce.
Cold-blooded as these written

agreements may have appeared
to the general populace, they
have been considered a necessity
(o ensure commercial and finan¬

cial stability, and by and large
they have fulfilled that purpose.
However, these documents also
have served a second function: as
blueprints for the orderly dissolu-
tion of the marital relationship.

today marriage is not the only
institution in our society that
enjoys less permanence than it
once did. Increasingly, the em¬
ployee who works for the same
('ompany 30 or 40 years, collects
a gold watch, and goes out to
pasture is becoming a rarity.
Sometimes this is not the employ¬

ee's choice: in our era, business
enterprises often are born, come

to vigorous maturity, and then die

or merge within the space of a few
years. Still, frequently it’s the
employee who makes the decision
that it’s time to move outward

and upward.
The implications of this evolu¬

tion in the Job market are signifi¬
cant both for employees and em¬
ployers. It’s in the best interest of
each that they realize at the time
an employment relationship is

created that it probably isn't
going to be permanent. In short,
a contract of employment should
be approached as though it were
an antenuptial agreement for a
marriage that may not last.

'fhe obvious difliculty with this

apiiroacli is that it often runs
counter to human psychology.
When we embark on a new job,

it’s natural to want to feel that
we’ve found our niche. P2vcn the

officers of large companies may

have a need to think of the firm’s
employees as a loyal corporate
“family”. The gold-watch mind¬

set is very much with us still.
But then, why not continue to
indulge ourselves in such fanta¬
sies so long as they make us

comfortable?
Well, one of the things that

puts lawyers on approximately
the same level of popularity as
undertakers is their propensity

for pointing out the unpleasant
realities of life—such as telling
people who don’t want to think
about their demise that they nev¬
ertheless should prepare wills.
Another unpleasant reality is
that employees and employers
need to contemplate the eventual
termination of their relationship

even as they begin it.

WHY IT MATTERS

Ordinarily, the gold-watch re¬

tiree actually retired. He or she
did not launch a new business in
the same field as the former
employer, nor did he or she be¬
come a consultant for one of its
competitors. Thus, if the retiree
knew any of the employer’s trade
secrets, which in the old days
wasn’t all that likely, it was of
little consequence. Today, it can
matter a great deal, especially in

the computer industry.
Moreover, an evolutionary al-

74 UNIX REVIEW SEPTEMBER 1985

UNIX^'' APPLICATION
DEVELOPMENT

TODAY is far more than the
awkward collection of tricks and
tools that are often labelled
‘‘4GL”. TODAY provides a
COMPLETE application
development environment that
will revolutionize the way you
develop and maintain applications.
No UNIX* systems knowledge
Is necessary.

Let’s put it frankly: developing
an application is a costly pro¬
position. You’ll need a highly
skilled team of designers, analysts
and programmers, and several
man-years to get things off the
ground. And that’s not to mention
the on-going costs of documenta¬
tion, customization and
maintenance!

TODAY tackles these problems
through a new methodology with
high performance architecture
and a comprehensive range of
features. It’s so quick and easy to
use that TODAY developers can
do the whole job—design,
analysis, development and
documentation.

TODAY provides a compre¬
hensive range of features that
keep application building easy
while optimizing development
resources:
• Powerful recursive logic and

Decision Tables
• Synonyms, Menus, Prompts,

Helps and Defaults for
streamlined definitions

• Screen Painter
• A Report Generator which

includes a Painter

IDDfflT
Cure for Backlogs

. Induced by 3GLs
in EDP Departments,

Software Houses
& Others

Push button Self¬
documentation
Audit Trails
Source-code security through
run-time only configurations

• Developed Applications
instantly portable across
UNIX* systems

Because definitions are
Dictionary-based, any changes
are easily made in one central
location. A key feature,
“tailoring” lets you alter an
application — perhaps to
customize it for a particular site
or user — without affecting the
original version. If required,
applications can be set up as
Models (Prototypes) and later
enhanced to grow and change
with the business. Tailoring
versions is the perfect solution for
quickly generating multiple
applications based on one Model.

TODAY runs under UNIX* or
UNIX*-compatible operating
systems on super-mini down to
micro business computers using
any of a range of databases. And
if that’s not enough, TODAY is
backed by 14 man-years of
research and development and
the confidence of users who are
breaking time zones in software
development.

See us at UNIX Expo, New
York City, September 18-20,
Booth 1303.

bbj Computer Services, Inc.
2946 Scott Blvd.
Santa Clara, CA 95054
Telephone: (408) 727-4464

Circle No. 284 on Inquiry Card

•Unix is a trademark of A T & T Bell Laboratories Inc. TODAY Copyright © bb) Computer Services Pty Ltd Melbourne. Australia, July 1983

U RULES OF THE GAME

tcration in the nature of the
employer-employee relationship

itself has been taking place. Ori¬

ginally, our laws permitted an
employer to discharge almost any
employee at will. Never mind that
the employee had served faithful¬

ly and was only a year away from
getting that gold watch. Gradual¬
ly this has been changing, no¬

where more dramatically than in
California, where liberal courts
are blazing the trail. Today it’s
extremely difficult in the Golden
State for an employer unilaterally
to replace a “permanent” em¬

ployee with another, except in
cases of actual nonperformance

or misconduct.
This means that often the

preferred way of getting rid of an

unwanted employee is to induce a

voluntary departure—the pain of
separation being soothed by a

generous administration of green
salve. The interests of both the
employer and employee with re¬

spect to such things as protecting
the employer’s trade secrets and
ensuring the employee’s ability to
engage in competing enterprises

can be furthered as part of the
termination agreement between
the two. Provision for this kind of
ultimately amicable parting may
be made most efTortlessly in the

initial hiring agreement.

IN GENERAL

As a newly-hired employee,

you should always be sure to

do two things for your own pro¬

tection. First, read everything
that’s presented for your signa¬

ture. Frequently this can be a
pain, but it’s the only way to
catch language in the employ¬
ment documents that you can’t
live with. Bear in mind that often

these provisions can be negotiat¬
ed. Suppose you plan to develop
software at home on your own

time with your own equipment,
and you’re handed the company’s
“standard” printed employment
agreement that says all of your
creations throughout the dura¬

tion of the employment are to be
turned over to your employer.

Although this part of the agree¬
ment probably wouldn’t hold up
in court under such circum¬
stances, it would be best to at¬
tempt to get it modified. If neces¬
sary, consult a lawyer to learn
what kind of language you can
accept. Why risk a nasty lawsuit

later on?
Second, keep everything per¬

taining to your employment, in¬

cluding the stuff that strikes you
as garbage. This means such
items as the orientation packet
(“Welcome to the XYZ Family...”)
because there might be some¬
thing in there that later on a judge
might decide was a part of your
employment contract. It’s a good
idea to put obviously important
documents, like the nondisclo¬
sure agreement you’ve signed, in

a safe deposit box. Other items,
such as orientation materials,
should be kept in your files at
home—not at the office.

For the employer, the check¬
list is a lot longer. While it’s
especially easy for a small em¬
ployer to overlook important de¬
tails—what company with

only two or three employees
has a personnel department?—
even large companies are not
immune. After all, most
sizable enterprises started out
small. In the process of having
“just growed”, all sorts of ad-

BEFORE YOU DO,
ASK THESE QUESTIONS:

1. "Do you have an unparalleled reputation for supporting end-users?”

2. "Have you selected only the best Unix hardware and software to sell?”

3. "Have you been offering timeshared Unix applications packages to hundreds

of users for more than 3 years?”

4. "Have you been using Unix for 10 years?”

IF YOU ASKED BASIS, WE'D SAY YES ... FOUR TIMES!

SPECIALISTS IN UNIX COMPUTING

1700 Shattuck Avenue Berkeley, California 94709 415 841 1800
UNIX is a trademark of AT&T Bell Laboratories.

Circle No. 265 on Inquiry Card

76 UNIX REVIEW SEPTEMBER 1985

ministrative subtleties may
have been passed by. (One hears
horror stories of long-time em¬
ployees who’ve never even been

required to sign nondisclosure

agreements.) And a firm’s docu¬
ments and procedures may have
developed piecemeal, with some¬

thing borrowed from here and
something copied from there, to
the point where they’re actually

inconsistent. Finally, some of the
more antique of these documents
and procedures may now be
illegal. The discussions of the
following items spotlight some

points employers should keep in
mind when bringing new employ¬
ees into the organization.

WRITTEN AGREEMENTS

The recent tendency on the
part of the courts has been to

elevate verbal employment agree¬
ments to the point where they
have nearly the clout of written
contracts. But oral agreements

have a huge disadvantage for
both parties: there’s no way to be
certain what they comprise until

some judge renders a decision.
F'or key employees, at least, it’s
desirable that the parties’ under¬
standing of the terms of employ¬
ment be put in writing. However,
it’s hazardous to attempt to use
(he same “boilerplate” contract
in all situations: if the agreement
is full of language that obviously
doesn’t apply while ignoring
areas that should have been cov¬
ered, a court might throw it out.

Besides defining the period of
employment and providing terms
for a separation, a written agree¬
ment can specify the sort of
activities that are considered in¬
consistent with the employment,
and can specify any limitations

on the employee’s right to engage
in competing enterprises after
termination. Such provisions,
however, must be carefully writ¬
ten so that they don’t run afoul of
legal prohibitions.

From the employer’s point of
view, one advantage of a compre¬
hensive written agreement is that
its provisions can be coordinated
to accomplish things that could

not legally be done piecemeal.
For instance, an otherwise unen¬

forceable agreement not to

compete might very well hold
up if it is coupled with the employ¬
er’s agreement to retain the for¬
mer employee as a consultant—

with suitable remuneration—
for a specified period after
termination.

NONDISCLOSURE

AGREEMENTS

Not only is it vital that the

employer require its employee to
sign appropriate agreements to

keep confidential the employer’s
trade secrets and proprietary in¬
formation, but the employer also
must take special care to comply
with any licensing agreements to
which it is a party. Typically,

licensees are required to obtain

nondisclosure agreements from

employees who have contact with

the licensed product. Failure to
comply with this requirement is a
breach of the licensing agree¬

ment. UNIX licensees should be
aware of the provisions of AT&T’s
licensing agreements in this
regard.

ORIENTATION MATERIALS

Even today, the majority of

employees probably regard most

of the items traditionally included

^■UNIX^H

POWER
100,000 software developers can’t be
wrong.'

UNIX is the chosen operating system for

more than 100,000 software developers
because it has the power they need. But

developers aren’t the only people who need

computing power. Any business that wants

multi-users to access the same files at the

same time or wants to simultaneously run

multi-task operations... needs UNIX. At

Dynacomp, we offer UniPlus -i- ® System V

by UniSoft Corp. For $1495. U.S. dollars

you can run UNIX on the CompuPro

816/E'" ... a powerful 68K

jCR)

oig/c ... d powenui

S-100 bus computer system that F Iwl

maximizes its memory for multi-user/multi-
task operations.

UniPlus-t- includes all the standard
UNIX System V features PLUS perform¬

ance enhancements found only in
UniPlus -I-. These features increase the

portability, flexibility, and performance of

UNIX, allowing an affordable operating sys¬

tem for program development, text prepa¬
ration, and general office use.

If it’s time for you to upgrade to UNIX,

call your local Full Service CompuPro Sys¬

tem Center in the United States or call

Dynacomp in Canada for com¬
plete details.

210 W. Broadway
Vancouver, B.C.

V5Y 3W2
(604) 872-7737 COMPUTER SYSTEMS LTD

46-6535 Mill Creek Dr.
Mississauga, Ont.
L5N 2M2
(416) 826-8002

Asi^Ynd mp Rim®?^ developing software under UNIX. Dynacomp serves all of Canada and parts of
r^mnnPm?// ^ and information on our full product line including Plexus. • UNIX is a trademark of Bell Laboratories Inc

Circle No. 268 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 77

U RULES OF THE GAME

in tlic typical ‘‘welcome aboard”

paeket as PR junk. Once they’ve
determined where their parking
area is and where their medical

bills should be sent, the tendency
is to discard this “welcome” ma¬
terial, or at least to shove it in the
bottom desk drawer where it will

never be looked at again.
However, lawyers are beeom-

ing increasingly aware of the use
to whieh they can put this seem¬
ingly innocuous material. They’re
especially intrigued by anything

in the way of an employee hand¬
book or manual, because these in

partieular have often been deter¬

mined by judges to eonstitute part

of the employment agreement.
For instance, does the orienta¬

tion material seem to promise
that particular benefits will be

provided on a continuing basis?
Does it state that it’s company
policy to permit employees to

work up to a particular age so long

as their job performance is satis¬
factory? Does it make mention

of grievance or disciplinary

procedures?
wSometimes management is un¬

aware of the representations

made by its personnel depart¬

ment in an endeavor to persuade
newly-recruited employees that
XYZ Company is the greatest

place on Earth to work. Given the
direction the eourts have taken,

the safest course is to regard
these orientation materials as

possible time bombs. All such
employee handouts should be re¬
viewed by a lawyer before their

dissemination.

EMPLOYEE EVALUATIONS

Though they may go on indefi¬
nitely, periodic employee apprais¬
als by supervisors, which many
large firms require, are really a
continuation of the hiring pro¬
cess. The dilliculty with these
evaluations, as anyone who’s
ever been on either the reeeiving
or the preparing end is aware, is

The pain of separation

can often be soothed

by a generous

administration of

green salve.

that they’re usually viewed as an

embarrassing nuisance. As a re¬

sult, evaluations lower than “ex-
eellent ” are rarely made. This
makes them worse than nothing

from the employer’s standpoint
because an employee eontesting a
dismissal ean use these glowing
evaluations as evidence in court
to show that he or she was

performing the job in excellent

fashion.
It comes down to this: if an

employer insists on some sort of
formal periodie evaluation of its
employees, it should devise a

system that will mean something.
Exaetly what this might be is
not clear: some commentators
have suggested that only essay-
type evaluations be used. Others
maintain that even these are not

worth the trouble.

DISCIPLINARY PROCEDURES

There’s inereasing agreement
among the legal fraternity that
it’s es.sential for an employer to
have a eonsistent, fair proeedure
for notifying employees that their
|)erformance is deemed unsatis¬
factory, and that failure to shape
up will result in discipline or
dismissal. Though the procedure

normally is not set forth in the
written employment agreement
itself, it can be ineorporated by

reference.
Whatever it may be, the disci¬

plinary procedure must be strictly

adhered to, or else the employee

will have a basis for eontesting
the employer’s adverse actions in
court. Therefore, the procedure

should not be unduly burden¬
some. Yet it can’t be so peremp¬
tory as to be manifestly unfair to

the employee. Clearly, it’s wise
for an employer to eonsult eare-
fully with an attorney before
deciding on a particular disiplin-
ary scheme.

JURISDICTION

In general, employer-employee
controversies are matters for the

state courts, although there are
signifieant exceptions, notably
claims of discrimination in viola¬
tion of federal civil rights laws.
Not everything that’s been said
here would apply in every state.

But jurisdiction in employ¬
ment matters is a tricky thing,
given the interdependence of

our present-day eeonomy. For
instance, under some cireum-
stances California courts would
have legal authority to apply its
laws to, say, an employee working
in Texas. Was the job offered and
accepted over the telephone while
the employee was attending a
conference in California? If so,
the contract of hire was made in
California, and its courts would

have jurisdiction.
Here is just another example

of the anomalies that result when
a nationwide economy operates
within an 18th Century federalist
system. This makes it even
more important that employers
and employees take eare to spell
out the terms and conditions
that govern their employment

relationships.

Glenn Groenewold is a California

attorney who devotes his time to
computer law. He has served as an
administrative law judge, has been
active in trial and appellate work,
and has argued cases before the

state Supreme Court. ■

78 UNIX REVIEW SEPTEMBER 1985

The Quality GKS
PRIOR’S GKS has been implemented in
the C language and is available to
OEM’s and END USERS under UNIX
and UNIX-like systems as well as
VAX/VMS. GKS/C is supported
under PC-DOS/MS-DOS.

OEM’s receive SOURCE CODE
(including VDI device support), well-
written manuals, superbly commented
listings, all available DRIVERS and the
first year UPDATE AND
MAINTENANCE for $12,000* plus
royalties. Our current release includes
code optimizations, improved execution
speed and reduced memory
requirements.

* Price subject to change without notice.

GKS/C is supported by PRIOR’s 75 in-
house Software/Graphics experts.
GKS/C is available to level 2C (UNIX).

3-Dimensional support will be available
by first quarter 1986.

For more information, call or write:

QBIIB
DATA SCIENCES

PRIOR Data Sciences
39 Highway 7, Ottawa, Ontario K2H 8R2 Canada
613-820-7235 —Telex: 053-3356

Circle No. 227 on Inquiry Card

Distributor inquiries welcome.

UNIX is a registered trademark of AT&T Bell Laboratories. VAXA/MS is a registered trademark of Digital Equipment Corporation.
PC-DOS is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

DEVIL'S
ADVOCATE

Keep those cards and letters coming

by Stan Kelly-Bootle

I was delighted to see those
“Dear Editor” letters in the The

Last Word feature of recent UNIX
REVIEWS, whereby you, the
readers, the very lifeblood with¬
out which etc., can participate in
our historic mission etc.

Ah, 1 can see my new WWB
(Writers Workbench) is not per¬

forming as promised. 1 was told
that the command etc. (extra

terms concatenator) would auto¬

matically generate apposite, in¬
line strings, known as ficelles
jListes or contextensions, until

you hit CTRL-S (Suspend). CTRL-
Q (Qeep going?), naturally, causes
a resumption of etc. output. To
avoid any confusion, the Berkeley

version uses CTRL-H (Halt) and

CTRL-R (Resume).
The etc. syntax (not to be

confused with /etc directories) is

easier to manage than sed syn¬

tax. For example;

etc.

with no arguments will amplify
your text with a string of up to 64
relevant characters (including
punctuation), but you retain the
option to pause, edit, continue, or

exit. Alternatively:

etc. Vs4V /'.7'

will provide four complete sen¬
tences, pausing at each full

stop—unless you intervene man¬
ually. All these textual interpola¬
tions come, by default, from the
standard WWB input file of con¬
text-sensitive data. However:

etc. 7'c37 /77' < yourfile

allows you to use your own private
fund of fillers, cliches, and place¬
bos. In this last example “c3“
indicates that three of your own
clauses should be selected with
what we call the “Reagan option”
(pause on semi-colon).

If, flying in the face of the The
Chicago Manual of Style (which 1
thought was a baseball book
until last season’s playoffs),
you need a genuine unexpanded
“etc.”, WWB provides a diacrit¬
ical tactic, but the exact sequence
escapes me at the moment.

Those who question the value

of all this and claim that it’s
quicker to type in one’s own
contextensions are clearly not
true UNIX addicts. Besides, for
writers in a hurry, especially
those paid by the em space, it is a
joy to produce 10 pages of pass¬
able rubbish with a quick: “The
computer has changed the way

we work, play, etc.
But back to the correspon¬

dence columns 1 started to speak
of earlier. Mail to editors has
always been my favorite branch
of literature, owing to the paucity
of my attention span. A friend of
mine who used to edit Picture
Post (a British version of Life

magazine) told me once that if
things were quiet, staff members
would write bogus letters to fill
the blanks. The subjects were
chosen to invoke torrents of genu¬
ine correspondence. His most
successful invention, which by a
stroke of genius managed to com¬
bine pets and religion, purported

to be from a widow who was upset
that her dog was not allowed in
with her when she went to
Chapel. For several years there¬
after. writers such as Co/. Rtd.,
Anti-Vivisectionist and Mother
of Eight sent in their weekly
epistles arguing the proposition
that “Animals have Souls”.

Fortunately, UNIX REVIEW has
no need to stoop to such trickery.

80 UNIX REVIEW SEPTEMBER 1985

We simply ask Bill Tuthill to use

goto in a program example...and,
whooosh, the mail room is bed¬
lam. “Bill,” we say, ‘‘page 104 is
looking rather bleak. D’you think
you could run up something, how

can we put it, that’s a tad un¬
structured?” Never fails.

Many have written asking
where / stand on the goto contro¬
versy that simply refuses to go
away. At the terribly low level of

my current programming efforts,
all 1 can promise is that I will
forego the old goto construct as
soon as Motorola can produce a
useful, compatible 68000 with no

JMP, BRA, or Bcc instructions.
Should Motorola tackle the proj¬
ect, rest assured that the big Coke
marketing fiasco will not be for¬
gotten. Forewarned, Motorola will
know better than to change the

68000 architecture to match that
of the 8086/8088.

Insofar as 1 understand the
goto discussion at higher levels, I
feel that 1 am essentially a neo-
Knuthian, not untempered by a
few hammer-blows from the post-

Dijkstranist Jacopinites. But
can it really be that simple? As 1
have explained elsewhere (The
Devil's DP Dictionary, McGraw-

Hill, 1981), the Bible makes it

clear that the goto is an integral
part of the inescapable Babel
Punishment Package. (“Goto,
let us go down and confound their
language.” —Genesis 11:7.) It
seems such a nice idea to be able
to transfer control to some as yet
unwritten part of your program
and then break for coffee. Yet,
verily, your sins will be manifest
even unto the next generation.

Recent renewed interest in Re¬
duced Instruction Sets reminds
me that in the early poor-but-
happy EDSAC days, we used to
ask, “If you were restricted to just
two machine instructions, which
would you choose?” The cunning
answer was, and still is (1 believe),
SUBTRACTand BRANCH-NEGA-

All I can promise is that

I will forego the old

goto construct as

soon as Motorola can

produce a useful,

compatible 68000

with no JMP, BRA, or

Bcc instructions.

TIVE. There you are! Stuck with
the dreaded goto, unless you

avoid multiplication and division.
And for all you Buddhing Zens out
there, what if you were reduced to

a single instruction? Would it be
the elusive comefrom or the sub¬
lime ijonly? Do write!

Liverpool-born Stan Kelly-
Bootle has been computing, on and
off, at most levels since the pioneer¬
ing EDSAC I days in the early 1950s

at Cambridge University. After
graduating from there in Pure
Mathematics, he gained the world's
first post-graduate diploma in Com¬
puter Science. He has authored

''The Devil's DP Dictionary" and co¬
authored ''Lern Yerself Scouse" and
"The MC68000 Software Primer". ■

WHEN SERIOUS PROGRAMMING
IS YOUR BUSINESS...
The Concurrent Euclid language
for systems programming provides
the best in efficiency, portability,
reliability, and maintainability
Compilers running on UNIX/VAX,
UNIX/11, VMS/VAX, with code
generated for MC68000,
MC6809, NS32000, 8086/8088
PDP-11, and soon running
on IBM-PC

CONCURRENT EUCLID
Compiler: CSRI Distribution Mgr.
Sandford Fleming Bldg 2002
10 King’s College Road
Toronto, Canada MSS 1A4
Tel: (416) 978-6985

Book: I
CONCURRENT EUCLID, I
THE UNIX SYSTEM AND TUNIS
Available from:
Addison-Wesley Publishing
Company, Reading, MA. 01867
Tel: (617) 944-3700

f^Spl^Jg'CLIO.
and TUNIS

CONCURRENT

E U C L 1 D

Circle No. 264 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 81

PROBLEM
 SOLVER^

Anatomy of a boot

by Bob Toxen

''Panic: init died!"

Most system administrators

eventually see this message. It
means that a system is dead or
dying. If it occurs after the system
has been running free of trouble
for a while, it’s indicative of a
minor problem that can be solved
by shutting down the system
normally (if possible), or execut¬
ing a sync and rebooting (running

fsck in the process).
If, on the other hand, this same

message or something similar
appears when your system is
booting up, you should panic! It
means that files critical to your
system’s operation are incorrect
or missing. In a previous issue
(October, 1984), we investigated
what a system administrator can
do to prepare for this eventuality.

This month’s column is con¬

cerned with what a system imple¬
mentor (or anyone else with
source code) can do to prevent the
problem. I define the “system
implementor” as a company that
maintains system software.
This is usually a hardware
manufacturer.

THE BIRTH OF A KERNEL

In order to understand what
prevents UNIX from booting up,
one must first understand how it
boots up normally. Many people
know that to start a computer,
they need only press a reset (boot)

button. Some UNIX systems even
reboot automatically when you
turn them on. This starts a
program stored in non-crasable
PROM memory called the
“PROM monitor” or simply the

“monitor”.
This program in turn starts

UNIX when a cryptic command is

entered at the console terminal,
'fhe monitor then reads UNIX
from the disk into memory and
starts it running. Immediately,
UNIX determines the amount of
memory available in the system,
ascertains how much is available
for user processes, and displays
the values on the console

terminal.
If the system does not get to

this point, it can be assumed that
one of four things has happened.
One, there may have been a
hardware failure. Two, the hard¬
ware may have been incorrectly

82 UNIX REVIEW SEPTEMBER 1985

configured: perhaps a DIP switch

was accidentally bumped. Three,
the wrong version of software

may have been installed in either
the PROM monitor or the UNIX
kernel. Four, the copy of the
kernel on disk may have been
damaged or erased. The name of
the file containing the kernel is
usually /Unix or /vmunix. A copy
should be kept in a separate file

as insurance against a damaged
kernel. When /unix (or /vmunix)
is changed, this backup copy
should not be updated until after
the new kernel has booted the
system successfully. This is a
hedge against the possibility that
the new version will not work
with your hardware or is other¬

wise defective.

THE KERNEL MATURES

After the kernel has “sized
memory”, it initializes any hard¬
ware needed for the root and
swap disk devices. (Initialization
of the console tty device and
memory already should have
been performed by this point.)
The kernel then simulates a
mount system call to configure
the root file system. Next, process
zero (which will become the
scheduler) is built and initiated.
This process, which contains
hand-compiled code copied from
kernel data space, does a fork
system call.

The child that is created,

Use Tango to;

• Connect IBM and
compatible PC's running

DOS to UNIX systems.

• Offload processing to

PC's.

• Control data and
applications on remote

PC’s.

• Distribute processing
between UNIX and PC’s.

Buy Tango for:

• Execution of DOS

programs on the PC

under UNIX control.

• Simple elegant file
transfer under error
correcting protocol.

• DEC IBM, and
Tektronix (graphics)
terminal emulation.

Tango utilizes a .standard
RS-232 serial port on

the PC and connects to

the UNIX computer via
a modem or direct
connection.

COSI

313 N. First St.

Ann Arbor. Michigan
48103

(313) 665-8778

Telex; 466568

Tango is a trademark of COSI.
UNIX is a trademark of Bell
L^iboratories.

The PC-to-UNIX'‘Connection

Circle No. 295 on Inquiry Card

W PROBLEM SOLVER

named process one, invokes
an exec system call to start
/etc/init. The parent, process
zero, then becomes the scheduler,
also known as the swapper. This
is not a user process but rather
Just another face of the kernel

itself. At this point, the kernel is
fully operational.

If the exec of /etc/init fails
(because /etc/init is missing or
incorrect) or if init ever dies, the
kernel will detect it and print the

message "panic: init died!" In
some implementations, though,

this actually does not designate a
panic situation (that is, a fatal
error). Although the chance of a

single file (/etc/init) getting da¬
maged is small, the kernel can
easily be modified to invoke, say,
/etc/geity if init cannot be ex-

ec'd. Getty, like init, does not
require standard input or output
to be set up—unlike most other
programs.

INIT FIRES UP (VERSION 7 AND

BERKELEY UNIX|

Different versions of UNIX
have different versions of init. On
Version 7 and Berkeley UNIX, init
forks off a child process that
opens /dev/console for reading
and writing. Since the system has

had no open file descriptors up to
this point in the startup proce¬

dure, /dev/console becomes file

descriptor zero, which is also

known as standard input. The
dup system call is then invoked
twice to duplicate this file de¬
scriptor for descriptors one and
two, which are known as stan¬

dard output and standard error. It
then issues ioctl or stty system
calls to set the correct baud rate,
erase character, and so forth on

the tty port. This child process
then execs /bin/sh and voild—
the machine is in single-user

mode.

INIT CHOKES AND DIES
(VERSION 7 AND BERKELEY
UNIX)

The kernel, /etc/init, /dev/-
console, and /bin/sh must all

exist for the system to come up. A

crash causing file system damage

to one of these, or a problem as
simple as an erroneous chmod
can keep the system down for
good. I have already covered con¬
tingency plans for the kernel and
/etc/init being damaged. Let’s

Only one ^
word processing

program for these
UNIXrbased systems

isrft just
a lot of talk.

Many companies are promis¬
ing UNIX-compatible word
processing software. But only
WordMARC™ is being used
successfully right now on such
major UNIX-based systems as
DEC,® HP,® SUN,® AT&T,®
MASSCOMP,® PYRAMID®
and NCR®

With WordMARC, you’ll
have a single, full-featured pro¬
gram that will end the prolifera¬

tion of word processing soft¬
ware. Training time will be cut
because the identical program
runs on all kinds of computers.
So users can easily switch a
terminals or systems. And
with its optional LinkMARC
feature, text created on your
UNIX-based system can be
transferred to and shared by
superminis and personal
computers.

UNIX, DEC, HP, SUN, AT&T, MASSCOMP, PYRAMID and NCR arc registered trademarks of, respectively, AT&TBcII Laboratories, Digital
Equipment Corporation, Hewlett-Packard Co., Sun Microsystems, Inc., AT&TBcII Laboratories, Massachusetts Computer Ct)mpany, Pyramid
Technology Corporation and NCR Corporatiim.

now consider how to deal with
/dev/console problems. If either

the open or ioctl system call fails,

init can assume that the device
node (the entry in /dev) is bad.

To catch other problems, one

also might set a 10-second alarm
clock prior to an open call and
turn it off when the open com¬

pletes. This will account for situa¬
tions where an open hangs,
which may occur if the major or
minor device values are wrong
(they might, for instance, errone¬
ously refer to a tape drive that
already has been turned off).

If init determines that /dev-
/console is bad, it can create its
own version of the file. When init
must resort to this, the file should
be created in the root directory as
a hedge against damage to the

The idea is to keep a

tape of the shell and

other useful programs

around so they can be

used when disaster

strikes.

/dev directory. The file, typically
called /console, first should be
removed with the unlink system
call in case an old version exists,
and then created with the mknod
system call. The major and minor

device numbers that should be
used will, of course, be hard¬
wired in init but these are unlike¬

ly to change from release to
release and are usually both zero
anyway. The init process then

can open /console instead of
/dev/console.

If the exec of /bin/sh fails, it
can try executing other programs
that might allow the system to
come up. If your system has csh,
then /bin/csh is a good second
choice. It’s possible that a copy of
your shell also is kept in /etc, so

you might try to execute that file
next. If this also fails, you can be
assured that you have a very
damaged file system. However,
reeovery is still possible.

One ean create a copy of the
tape (or floppy) device, usually

pyramid

In addition to being compati¬
ble with all kinds of computers,

WordMARC also gets along
with all kinds of users.

Its documentation is
written specifically for the

computer system it will oper¬
ate on. Its self-teaching guide

helps novice users get quickly up
o speed. And it’s supported by a

special “800” number hotline.
WordMARC’s many versatile

features include technical and
scientific symbols, foreign lan¬
guage characters, a what-you-
see-is-what-you-get screen, and
menu-driven operation with

convenient function keys.
WordMARC can also be

integrated with other popular
applications software.

So get the UNIX-compatible
word processing system that’s up
and running now—and put
your word processing software
resources back under control.
With WordMARC. The
Uncommon Denominator.

Contact MARC Software
for more information.
260 Sheridan Ave¬
nue, Suite 200, Palo
Alto, California,
94306.

MARC SOFTWARE INTERNATIONAL, INC.
1'800'831'2400. In California 1'800'437'9900.

Circle No. 260 on Inquiry Card

WordMARC
The Uncommon Denominator

WordMARC is a trademark of MARC SOFTWARE INTERNATIONAL, INC. © 1985, MSI. INC.

U PROBLEM SOLVER

/clev/rmtO, in the root directory
in much the same way as a copy of
the console was created. A tempo¬
rary file, say, /tmpexec—with
mode 111—can then be created.

This will allow init to copy data
from the tape drive to the tempo¬
rary file until an EOF is reached
on the tape. The init process can
then close both file descriptors,
issue a sync system call, sleep for

10 seconds, and exec /tmpexec.
The idea is to keep a tape of the
shell and other useful programs
around so they can be used when
disaster strikes. The material on

this backup can then be loaded
into the system and used to fix
damage. It may be necessary to
create special versions of the
utilities to be included in the

fyee Shell
A Graphic Visual

Shell for Unix/
Xenix End-Users and

Experts Alike I

Dealer inquiries welcomed.

"A Higher Form of Software"
24000 Telegraph Road
Southfield, Ml 48034

(313) 352-2345
TELEX: 386581 COGITATE USA

Circle No. 262 on Inquiry Card

86 UNIX REVIEW SEPTEMBER 1985

An insurance policy

you should keep in the

vault Is a recent backup

of all files.

backup since the loading proce¬
dure will not allow arguments to

be supplied. The tar and fsck
commands are likely candidates

for such modification.
Another problem to deal with is

that the single-user shell may be
successfully exec'd but then die

“HOT”
OPPORTUNITIES

CAMBRIDGE-BOSTON
RT. 128

• UNIX/LISP
• GRAPHICS/PIXELS
• UNIX KERNAL
• MS/DOS SPREADSHEET
• X.25 LAN/COMMUNICATIONS
• HARDWARE DEVELOPMENT
• “C” Application Dev.
• MICROCODE 3D
• R&D Equity Positions
• Positions are all levels of expertise and numerous.

• CALL NOW (617) 868-5188
JIM BARRY

a or send your resume
ADVANCED ERGONOMIC
MANAGEMENT

Software & Engineering
Personnel Consultants
18 BRATTLE ST. #451
CAMBRIDGE, MA 02138

Circle No. 261 on Inquiry Card

immediately thereafter. This can

happen if part of the binary gets
clobbered in such a way that it

starts up but quickly core dumps.

A way to detect this is to have the
parent process invoke the time
system call before the fork occurs
(prior to execing the child pro¬

cess) and then check the wait
afterwards to see how long the

child was alive. If it was less than

roughly 15 seconds, the shell can
be assumed to have terminated
abnormally and the parent, init,
should be prodded into invoking
other programs such as csh or
tar, or possibly into using /con¬

sole instead of /dev/console.
There are other possible tech¬

niques. One is to create a file
system on a floppy (or a tape, if
you are clever), including such
critical programs as sh, Is, tar,
chmod, and so forth. The init
process could then attempt to
mount the floppy when an exec of
/bin/sh fails. In some cases, it
may turn out that the best alter¬
native is simply to fix the hard¬
ware and reload lost software
from backup media.

INIT GOES MULTIUSER
(VERSION 7 AND BERKELEY

UNIX)

If all goes well, the parent will
see its child process die. The final
blow is usually delivered by a
CTRL-D. The parent, init, then
enters multiuser mode. This
means that it reads the /etc/ttys
file and forks and execs a getty
{/etc/getty) for each tty that
users will be allowed to login at.
Kach getty opens a tty device
specified in /etc/ttys for stan¬
dard input, output, and error, and
then prompts for a login name. It
then execs login, using the login
name it receives as an argument.
Login goes on to prompt for
a password, verify it against
/etc/passwd. and start what¬

ever shell it finds listed in
/etc/passwd.

INIT (SYSTEM III
AIMD SYSTEM V)

In System III and V, the admin-
is(rator is given more control over

init states (generically called sin¬
gle-user and multiuser modes)

by configuring the ASCII file
/etc/inittab. Under System III,
one specifies the program that
should be invoked on particular
ttys in certain states. State 1 is
considered to be single-user mode
and one usually starts /bin/sh or
/biji/csh on /dev/console. For

additional security, one might
wish to invoke login instead.

Under System V, single-user

mode is called "state s'\ When
this state is entered, init will first
look in the /etc/inittab file to see
if it should enter single-user mode
or one of the multiuser modes
when the system is first booted. If
single-user mode is specified
(with the defaultboot entry, or
simply by default), init will in¬
voke su which in turn will look in
the /etc/passwd file for an entry
called root. The su command will
then exec the program specified
in this entry as the shell. Thus,
if /nnix, /etc/init, /etc/inittab,
/bin/siL, /etc/passwd, or
/bin/sh (or /bin/esh) is damaged,
the system will not be able to

come up. This should illustrate
the perils of requiring so many
files to exist and be correct for a
system to initialize correctly. The
dangers are even greater than
they might initially appear be¬
cause the administrator will fre¬
quently have cause to alter

/etc/passwd and /etc/inittab.
The init program can be modified
to deal with these problems by

using the techniques discussed in
“Init Chokes and Dies (Version 7
& Berkeley UNIX)".

Be on guard, though—if the
/etc/inittab file is missing, the
System V init program still will
prompt the user on the console
for tlie correct state to enter but
due to a bug, it will not accept

data that has been specified
using a computer based on the
MC68000. The bug makes init
dependent on the byte ordering of
ints. To cure the bug, search for
where init attempts to read a
single byte into the variable c,
which is declared as an int. Use a
variable declared as a char in¬
stead in these instances. If you
should decide, though, to add
these features to the kernel and
init, be sure you have a way to
boot your system from a different
disk whenever you debug your
code!

I have implemented most of the
features described here and thus
have been able to boot up many
systems and remedy many prob¬
lems that otherwise would have
been untouchable. These steps

should prove to be good insurance
for you as well.

Another insurance policy you
should keep in the vault is a
recent backup of all files. Under
no circumstances should the
steps proposed in this article be
considered as a replacement for
regular backup procedures; con¬
sider them, rather, as a comple¬
ment. With a full backup to resort
to. yoifll be able to restore vital
system and user files even after
the severest disaster.

Bob Toxen has gained a reputa¬
tion as a leading expert on UUCP
communications, file system repair,
and LINIX utilities. He has also
done ports of System III and System
V to systems based on the Zilo^ HOOO
and Motorola 68010 chips. ■

GNIX/XENIX Communications
Available NOW!

Put your
computers on

speaking terms. 295 00

TERM. Communications Software
Everyone from the beginning computer user to the expert finds TERM easy to learn and powerful to use Just
plug it in and go' In a few keystrokes you can access a remote database or send a group of files to another
system.

TERM allows your computer to perform efficient, error-free exchange of binary or text files, over phone lines
or hard-wired circuits at speeds of up to 9600 baud. Available options allow you to include or exclude a group
of files for transfer in a single command

TERM'S "data capture" feature allows saving transcripts of sessions with remote mainframe and minicompu
ters to disk for later editing or printout, if desired.

’ Pre-installed and ready to run
’ Automatic error checking and re-transmission
’ Wildcard (*,*) file send/receive, capability
' Xon/Xoff, Etx/Ack, Ascii piotocols for com¬

munications with non-TERM systems
• Full/half duplex emulation mode for remote

systems

Modem? protocol for remote bulletin boaids
Auto-dial/Answer and Hangup supported on
Hayes Smartmodem 300/1200 and compatibles
Programmable batch file capability

• Unattended file transfer/auto logon
’ Translation tables for input and output

Remote maintenance capability

Term is available NOW on the Altos 586. IBM AT. Tandy Model 16. AT&T 362 and IBM PC/XT MSDOS and many
others. Find out how easy it is to get your UNIX. Xenix, and MSDOS machines all talking together

CEN I'l’m’
software

liVe make it easy for you.

9558 South Pinedale Circle
Sandy, Utah 84092

(801) 943-8386

Circle No. 263 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 87

Note: only those meanings
related to computer languages
are included in this installment.

assembler—a program which

translates computer instructions
from symbolic form to the
machine language suitable for
execution by a computer. “As¬

sembler" is also sometimes used
loosely to refer to input “assem¬
bly language”. Although strictly
speaking, an assembler trans¬
lates each assembly language
source statement into one
machine code, more complex
programs called “macro assem¬
blers” can translate one source
statement into many machine
codes. The standard UNIX assem¬
bler is usually called as, but the
actual program varies with the
liardware it runs on. Many UNIX
compilers (which translate high
level language to machine code)
actually emit assembly language
as their output, relying on as to
assemble the code to executable
form.

axiomatic—said of languages
that are expressed in terms of
explicitly defined rules, or in
terms of the logical extension and
combination of those rules. In
the UNIX community, Pascal
and Modula-2 arc most often used
as examples. C, by contrast, is
not axiomatic because its gener¬
al rules are broken by large
numbers of special cases and
exceptions.

THE UNIX
GLOSSARY

Language of languages

by Steve Rosenthal

binding—refers to a connection
between a language and an exter¬
nal set of routines or resources,
such as a graphics package. Pro¬
ducing an error-free binding be¬
tween an external resource and
an existing language is often a
difficult programming task.

cast—to change a value ex¬
pressed in one data type or format
to an equivalent value in another
format. Some languages, such as
C, are relatively tolerant of casts
and even do some automatically.
Others, with strong typing, such
as Pascal, allow them more
grudgingly, and even then only
through explicit functions.

compiler—a software package
that converts a complete program
or module from a high-level lan¬
guage used by people into ma¬
chine language instructions that
a computer can actually execute.
Once the compiled program is

saved in machine language form,
it can be used again without
retranslation. Developing a com¬
piled program is more difficult
than writing one for an inter¬
preter (where the program is
translated each time it is run), but
compiled programs run faster.

compile-time error—a mistake
flagged by a compiler program
written during the process of
translating a program in a high-
level language to executable form.
Because in most cases the com¬
piler can point accurately to
the offending statement, compile
time errors are often easier to fix
than those of the more elusive
runtime variety.

context-free—said of languages
and their grammars (or syntax)
where words or symbols can be
analyzed or substituted for with¬
out consideration for adjacent

elements. Context-free grammars
are easy to process, but they're
further from human language use
than grammars that do consider

context.

control structure—in a com¬
puter language, the constructs
that direct the flow of a program
from statement to statement.
Most theorists consider that there
are less than half a dozen distinct
control structures. In the pro¬
gramming philosophy known as
structured programming, control
structures that encourage modu¬
larity and program readability are

88 UNIX REVIEW SEPTEMBER 1985

encouraged, while goto state¬
ments and other forms of uncon¬

trolled transfer are discouraged.

high-level language—a comput¬
er language for writing programs
in which the statements connote
logical operations rather than
exact steps for a machine to
follow. A single high-level lan¬
guage instruction may cause a
machine to execute tens or even
hundreds of machine instruc¬
tions. High-level languages must
be translated into machine lan¬
guage before a computer can
execute them. This task is han¬
dled by compilers and inter¬
preters. C and the UNIX shell are
high-level languages, but C also
has features that allow low-level
interaction with the hardware.

high-order language—a n o t h e r
term for “high-level language”
that’s used mostly in Europe and
by academic experts in this coun¬
try. See high-level language.

incremental compiler—a pro¬
gram that accepts statements in a

high-level language and trans¬
lates them into an executable or
intermediate form without wait¬
ing for the collection of all input
statements. Incremental compil¬
ers thus olTer the advantage of
immediate feedback (like inter¬
preters) and the fast running
times characteristic of compilers.
Several proprietary incremental
compilers have been developed
for C and other languages run¬
ning under variations of UNIX.

interpreter—a software package
that translates a program from a
high-level language to executable
form by translating and execut¬
ing each line in turn without
waiting to translate the program
as a whole. Interpreters make it
easy to write and debug programs
since projects can be built up
from small parts and tested easi¬
ly. but interpreters require that
time be taken to re-translate

programs every time they are run,

even if there are no errors. Stan¬
dard UNIX is compiler-oriented,
but interpreters are offered for

some languages in many com¬
mercial implementations.

lexical—referring to words
or their formation. Most com¬
puter languages have lexical rules
specifying reserved words, sym¬
bol sets, the construction of
names, the treatment of case, and
so on. These are supplemented by
the syntactical rules that deter¬
mine how words can be put
together in statements.

low-level—said of computer lan¬
guages or operations that are
expressed in terms closely related
to hardware rather than more
general logical abstractions. Low-
level languages (such as assembly
language) allow more control and
faster progreim execution, but
they arc more difficult to write
and debug. One reason for the
success of C as a language
has been that it is basically a
high-level language that never¬

theless allows some degree of low-
level programming. Consequent¬
ly, even much of the UNIX kernel
is now written in C.

meta-language—a formal sym¬
bolism used to describe a com¬
puter (or natural human) lan¬
guage. The meta-language most
commonly used is BNF (Backus-
Naur Form), which makes exten¬
sive use of brackets, braces and
capitalization (or boldface) to
show which elements are rc-
ejuired or optional parts of state¬
ments and which are descriptions
or explanations.

Modula-2—a language based on
Pascal that offers improvements
and additions that make it more
suitable for production use. Like
Pascal, it was written by Niklaus
Wirth. Some UNIX programmers
feel that because Modula-2 has
many of the best features of both

Excellent
Dealer
Opportunity...

LIONS GATE SOFTWARE has com¬
pleted the conversion and
implementation of the complete
MCBA library of packaged
software products for operation
on most computers.

Features of this unique set of
software solutions include:

□ Portability - MS/DOS, XENIX
and UNIX V

□ Performance - Benchmark
Tests

□ Support - Full Warranty
Service Including 800#
Telephone Support

□ Marketing Assistance -
Customized Sales Brochures

□ Aggressive Pricing
□ Complete Documentation -

Excellent User and System
Manuals

Your business will be based on
15 Fully-Integrated Accounting,
Distribution, Manufacturing and
Report-Writing products.

Inquire today!
In the U.S.A: (800) 663-8354
Elsewhere: (604) 437-0001

We now have demonstration and
source programs available for
immediate delivery on the AT8tT
6300,7300 and 3B series.

LIONS GATE

SOFTWARE INC.
2555 Gilmore Avenue,

Burnaby, B.C. Canada, V5C4T6

Please send me information on
this excellent dealer opportunity:

Name_

Phone Number {)_

Company_

Address_

Ci^_

State_Zip Code_

(End User Inquiries Welcomed)

Circle No. 257 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 89

X.25 FOR UNIX*
Communications

System

• Efficient, error-free data
transmission to multiple
hosts via international
standard X.25, the only
fully certified error-free
public networking system
used world-wide.

• User utilities
• Remote user login
• Remote mail service
• Remote file transfer

• Compatible with widest
number of host
computers.

• Hardware available for
VME, Multibus and
others.

• Previously certified on
TELENET, TYMNET and
UNINET networks.

• Lowest cost per node.

Adax, Inc.
737 Dwight Way

Berkeley, CA 94710
(415)548-7047

* UNIX is a trademark of Bell Laboratories.

Circle No. 259 on Inquiry Card

U GLOSSARY

Pascal and C, it should supplant

the latter as the system language
for UNIX programming.

modularity—the degree to
which a computer language sup¬
ports the decomposition of pro¬
cesses into smaller units with
clearly defined interfaces and
interactions. C tolerates but does

not especially encourage modular
programming, while Pascal virtu¬

ally demands it. Modular pro¬

grams are easier to understand
and maintain, but they also take

extra time to produce.

non-procedural language — a
computer language that expects
the user to provide a description
of the available input data, the
desired output, and their relation,

but lets the system choose the

steps needed to produce the out¬
put. Some UNIX databases and
program generators employ non¬
procedural languages, and artifi¬
cial intelligence (Al) research
promises to extend this approach
to other areas as well.

object-oriented language — a
language based on descriptions of
logical objects, each of which can
be acted upon by a data structure
and a set of valid operations. Data
is stored as instances of objects,
which can interact by sending
and receiving messages. One pri¬
mary advantage of this approach
is that each object can be treated
as a “black box", with details of
its operation hidden from other

objects. This, in turn, allows
for easier maintenance and
upgrading.

pre-processor — a software

package or part of a compiler
program that translates a special
dialect or abbreviated form of a
computer language into a stan¬
dard format for further process¬

ing. In UNIX, the RATFOR (Ra¬
tional Fortran) pre-processor that
translates RATP'OR statements
into fmrtran is the best known,
but the standard C compiler also

includes a pre-processor stage

that expands macros and does
other symbolic manipulation.

procedural language—a com¬
puter language in which the user

specifies the flow of control and
the operations to be performed on
data. Most popular computer lan¬

guages used with UNIX are proce¬
dural, including C, Fortran, BA¬

SIC. Pascal and Modula-2.

runtime error—an error that

occurs during the execution of a

program rather than during the
translation of the program from
high-level language to executable
form. Runtime errors can cause
program crashes, or, worse yet,
erroneous results that ofTer no
explicit warnings.

runtime error checking—a fa¬
cility ofTered by some languages,

notably Pascal and related dia¬
lects, that compares the value
of variables (and sometimes
program How) against their de¬
fined possibilities. Runtime error
checking does slow program ex¬
ecution, but it can be an impor¬
tant aid in the war against logical
and notational errors. Unfortu¬
nately. most implementations of
C under UNIX do not otTer this
option.

self-documenting—said of com¬
puter languages that are written
in a form that can be easily read
and understood, allowing pro¬
grams to be written without an
abundance of explicit comments
and explanations. C, because
of its terseness, is not nor¬
mally considered self-document¬

ing. while Pascal, COBOL, and
Modula-2 often are. In reality,
however, extensive comments are
usually required even in the latter
group of languages to make all
but the simplest programs com¬
prehensible and maintainable.

semantic—of or referring to the
meaning of words or statements.

At this stage, most computer

90 UNIX REVIEW SEPTEMBER 1985

language processing is based
IDurely on syntactical and lexical

analysis, but one promise of arti¬
ficial intelligence (AI) technology
is that someday semantic factors
will be considered as well.

separate compilation—transla¬
tion of a portion of a program
from source language to execut¬
able form without recompiling
the rest of the program. Some
compilers, including most of
those for Pascal under UNIX, olTer
this capability. By allowing mod¬
ules that are compiled separately
to be combined and run together,
separate compilation encourages
modular programming and a
team approacli to large projects.

strong typing—the requirement
that variables be defined accord¬
ing to the type of data they will

contain (and, optionally, accord¬
ing to the valid range they'll fall
in) before they’re actually used in
a program. Languages in the
Pascal family use strong typing,
but C and BASIC do not.

syntax—the rules for combining

words and symbols to create valid
statements in a given language.
Also known as the “grammar" of
the language.

terse- -said of a language that
requires few words or symbols to
express operations. Both C and
the UNIX shell language are terse,
for example, while COBOL is not.
'ferseness is valued by hackers
and frequent users, but the corre-
s|X)nding obscurity is often a
problem for occasional users or
people who must maintain other
l^coplc's code.

threaded language—a language
(hat allows users to define new
(’ommands with existing terms,
and (hen use the new commands
both to execute programs and
define further commands. During
processing, the program is treat¬
ed as a linked list, with the
system following terms back up

the list until it reaches a core
vocabulary. FORTH is the best
known of (he threaded languages.

Turing complete—said of a com¬
puter language that can express
all possible computational opera¬
tions (although not necessarily
elTiciently or elegantly). All of the
general-purpose languages for
UNIX are Turing complete, but
some of (he more specialized
format ting and text manipulation
languages are not. The term is a
reference to the Turing Machine,
a theoretical device developed by
Alan Turing to show that all
actual computer procedures can
be modeled using a series of
simpler operations.

type —refers to the variety of data
that a v^ariable, constant, or func¬
tion can contain or produce. Most

computer languages support a

range of simple data types (such
as integers, characters, and real
numbers) as well as composite
types (such as arrays and rec¬
ords). UNIX has traditionally fa¬
vored languages with weak typ¬
ing, such as C and BASIC, but
St rong-typing languages such

as Pascal and Modula-2 are gar¬
nering increased interest due
to their better readability and
maintainability.

verbose—said of a language that
uses many words or symbols to
ex {Dress an ojDeration. COBOL is
probably the example most often
cited. While many UNIX people
{Drefer terse languages such as C,
x'crbose languages tend to lend
themselves to readable {Drograms
and easy jDrogram maintenance.

Cojujiicjits, questions, correc¬
tions? Please send them to
Rosenthal's UNIX Glossary, Box
9291. Berkeley, CA 94709.

Stci'c Rosenthal is a le.xicof^ra¬
phe r and writer living in Berkeley.
His columns regularly appear in six
microcomputer magazines. B

CEBGEN-GKS
GRAPHICS

SOFTWARE in C
for UNIX

□ Full implementation of
Level 2B GKS.

□ Outputs, Inputs, Segments,
Metafile.

n Full Simulation for Linetypes,
Linewidths, Fill Areas,
Hatching.

□ Circles and Arcs, Ellipses
and Elliptic Arcs, Bezier
Curves.

□ Ports Available on all
Versions of UNIX.

□ CEEGEN-GKS is Ported to
Gould, Mosscomp, Plexus,
Honeywell, Cadmus,
Heurikon, Codoto, NBI,
NEC APCIII, IBM-AT, Silicon
Graphics, Pyramid, Tadpole
Technology, Apollo, AT8cT
3B2, AT&T 6300, DEC VAX
11/750,11/780 (4.2, 5.2),
NCR Tower.

□ CEEGEN-GMS GRAPHIC
MODELING SYSTEM: An
Interactive Object-
Oriented Modeling Product
for Developers of GKS
Applications. CEEGEN-GMS
and GKS Provide the
Richest Development
Environment Available on
UNIX Systems.

□ Extensive List of Peripheral
Device Drivers Including
Tektronix 4010, 4014, 4105,
4109, HPGL Plotters,
Houston Instruments,
Digitizers, Dot Matrix
Printers and Graphics CRT
Controllers.

□ END USER, OEM,
DISTRIBUTOR DISCOUNTS
AVAILABLE.

CEEGEN CORPORATION
20 S. Santa Cruz Avenue, Suite 102
Los Gatos, CA 95030
(408) 354-8841
TLX 287561 mibx ur

EAST COAST
John Redding 8 Associates
(617)263-8206
UNITED KINGDOM
Tadpole Technology PLC
044 (0223) 861112
UNIX IS a trademorl/ of BeH I abs
CEFGLN GKS is a trademark of
Ceegen Corp

Circle No. 258 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 91

RECENT
RELEASES

ADA GOES ABROAD

Vcrdix Corp. lias signed an
agreement with GEC Software

Limited, a wholly-owned subsid¬
iary of the General P^lectrie
Company PLC, [Britain’s largest
eleetrical and eleetronics com¬
pany. GEC will become the
P^uropean center for sales, sup¬
port. and training of all Verdix
Ada and Ada-related products.

Meanwhile, Ada products devel¬
oped by GPX will be marketed in
the US through Verdix. The
agreement also gives GEC mar¬
keting rights for the family of
Verdix Ada produets in all non¬
communist PTiropean countries,
Australia, and New Zealand.

Ada, developed by and known
for its use in the US Department
of Defense, now has an opportu¬
nity for growth within the Euro¬
pean defense industry. According

to Derek Alway, Managing Direc¬
tor of GEC Software, “Amend¬
ments have been made to the
US Code of P'ederal Regulations
...which re-classifies software as
technical data, thus removing the
r(‘ciuirement to obtain a validated
export license for export of cer¬
tain software, including Ada

software.”
Tlie agreement with GPX fol¬

lows two recent Verdix agree¬
ments with US defense and
aerospac'e contractors, Martin
Marietta and Honeywell. Martin
Marietta has acquired a 16 per-
cenl ec|uity interest in Verdix, and
1 loneywell has signed a major
ICnd User License Agreement to
us(' (he Verdix Ada Development
System (VADS) in tlie develop-
nu'nt of Ada software for embed¬

ded .systems.

Currently VADS, including the
Verdix Ada compiler, runs under
4.2HSD and Ultrix on the range of
DPX VAXen from the 11/730
upward. Verdix also recently
ported its VADS to Sun Microsys¬
tems' 68000-based workstation.

Verdix Corp., Westgate Re¬

search Park, 7655 Old Spring-
house Rd., McLean, VA 22102.
703/448-1980.

Circle No. 224 on Inquiry Card

FORTRAN ANYONE?

A prime focus of IBM’s plans

lor the PC AT is to penetrate the
scientific applications market.
With this in mind, Ryan-McFar-
land Corp. is preparing an imple¬
mentation of its RM/Fortran
compiler to run under Xenix
on the PC AT and other 80286/
AT-compatible systems. RM/For¬
tran is the same compiler IBM
markets as IBM IX Professional
P'ortran for its Engineering and
Scientific Series of maehines.
The new Xenix implementation
can execute the same source
code developed for the DOS

implementation.
The Xenix 286 product has

certain requirements, however—
namely, an 80287 floating point
jDrocessor (selling for around
S200), the Xenix system, and
(he Xenix Software Development
System. RM/Fortran is, however,
a ('omplete implementation of the
Fortran-77 standard, certified as
error-free by the GSA. It also
supjiorts arrays and programs
larger than 64 K bytes, and has
exlensions and features found in
mainframe applications, includ¬
ing symbolic names of up to

31 characters, Hollerith and
hexadecimal constants, and In¬
dustrial Real-Time Fortran (IRTF)
binary pattern and bit-processing

functions.
The PC AT and the Altos 2086

are the first machines on which
the new version, due out this
month, will be available. Suggest¬

ed retail for Xenix RM/Fortran is
S750.

Ryan-McFarland Corp., 609
Deep Valley Dr., Rolling Hills

Estates, CA 90274. 213/541-
4828.

Circle No. 225 on Inquiry Card

MAKING OPTIMEM USE OF
MEMORY

The Optimem 1000, the first
optical disk drive announced by
an American company a little
under two years ago, is slowly

working its way into use with
UNIX-based systems. Any prod¬
uct that makes large amounts of
storage more accessible is worth¬
while to UNIX users, and the
1000, which stores 1 gigabyte of
data on one side of a single 12-
inch removable disk using write-
once technology, could be a good
a nswer.

Upgraded to be mode-compati¬
ble with 3M media, the Optimem
1000 is now being used on two
UNIX-based systems, according
to Larry Fujitani, Optimem Direc¬
tor of Marketing. One of these, a
MassComp machine, was ported
by a system integrator in Seattle,
and the other is under develop¬
ment. More ports to UNIX sys¬
tems are being considered by
Optimem.

The single-quantity price for

92 UNIX REVIEW SEPTEMBER 1985

Productivity Tools from the Leading Publisher of C ProgramsT

The Lattice® C Compiler
The cornerstone of a program is its compiler; it
can make the difference between a good pro¬
gram and a great one. The Lattice C compiler
features:

• Full compatibility with Kernighan and
Ritchie's standards

• Four memory model options for control and
versatility

• Automatic sensing and use of the 8087 math
chip

• Choose from the widest selection of add-on
options

• Renowned for speed and code quality
• Superior quality documentation

"Lattice C produces remarkable code.. .the
documentation sets such a high standard that
others don't even come close... in the top cat¬
egory for its quick compilation and execution
time and consistent reliability."

Ralph A. Phraner, Byte Magazine

Lattice Library source code also available.

Language Utilities
Pfix 86/Pfix 86 Plus — dynamic and symbolic
debuggers respectively, these provide multi¬
ple-window debugging with breakpointing
capability.
Plink 86 — a two-pass overlay linkage editor
that helps solve memory problems.
Text Management Utilities — includes GREP
(searches files for patterns), DIFF (differential
text file comparator), and more.
LMK (UNIX "make") — automates the con¬
struction of large multi-module products.
Curses — lets you write programs with full
screen output transportable among all UNIX,
XENIX and PC-DOS systems without changing
your source code.
BASTOC - translates MBASIC or CBASIC
source code directly to Lattice C source code.
C Cross Reference Generator — examines your

C source modules and produces a listing of
each symbol and where it is referenced.

Editors
Pmate — a customizable full screen text editor
featuring its own powerful macro command
language.
ES/P for C — C program entry with automatic
syntax checking and formatting.
VEDIT — an easy-to-use word processor for
use with V-PRINT.
V-PRINT — a print formatting companion for
VEDIT.
CVUE — a full-screen editor that offers an
easy way to use command structure.
EMACS — a full screen multi window text
editor.
Fast/C — speeds up the cycle of edit-compile-
debug-edit-recompile.

Graphics and Screen
Design
HALO — one of the industry's standard
graphics development packages. Over 150
graphics commands including line, arc, box,
circle and ellipse primitives. The 10 Fontpack
is also available.
Panel — a screen formatter and data entry aid.
Lattice Window — a library of subroutines al¬
lowing design of windows.

Functions
C-Fbod Smorgasbord — a tasty selection of
utility functions for Lattice C programmers;
includes a binary coded decimal arithmetic
package, level 0 I/O functions, a Terminal In¬
dependence Package, and more.
Float-87 — supports the 8087 math chip to
boost the speed of floating-point calculations.
The Greenleaf Functions — a comprehensive
library of over 200 routines.
The Greenleaf Comm Library — an easy-to-

use asynchronous communications library.
C Power Packs — sets of functions useful for a
wide variety of applications.
BASIC C — This library is a simple bridge
from IBM BASIC to C.

Database Record
Managers
Phact — a database record manager library of C
language functions, used in the creation and
manipulation of large and small databases.
Btrieve — a sophisticated file management sys¬
tem designed for developing applications under
PC-DOS. Data can be instantly retrieved by key
value.
FABS — a Fast Access Btree Structure function
library designed for rapid, keyed access to
data files using multipath structures.
Autosort — a fast sort/merge utility.
Lattice dB-C ISAM — a library of C functions
that enables you to create and access dBase
format database files.

Cross-Compilers
For programmers active in both micro and mini
environments we provide advanced cross-
compilers which product Intel 8086 object
modules. All were developed to be as functional
— and reliable — as the native compilers. They
are available for the following systems:

VAX/VMS, VAX/UNIX, 68K/UNIX-S,
68K/UNIX-L

Also, we have available:
Z80 Cross-Compiler for MS- and PC-DOS —
produces Z80 object modules in the Microsoft
relocatable format.

New Products
Run/C — finally, a C interpreter for all levels of
C Programmers.
C Sprite — a symbolic debugger with break¬
point capability.

CM LIFEBOAT: 1-800-847-7078. In NY, 1-212-860-0300.

Name.

Company Name_

Address_

.Business Phone.

Please check one of the following categories:

O Dealer/Distributor D End User D Other.

Circle No. 252 on Inquiry Card

Return Coupon to: Lifeboat™ Associates
1651 Third Avenue, Nezv York, NY 10128

© 1985 Lifeboat Associates

=;J RECENT RELEASES

The Optimem lOOO optical disk drive.

(lie Optimem 1000, with SCSI

interface, is $13,600.
Optimem, 435 Oakmead Park¬

way, vSunnyvale, CA 94086. 408/

737-7373.
Circle No. 242 on Inquiry Card

COMPUTER WARRANTY

PARALLELS CHRYSLER

Perhaps finding inspiration in

Lee laeoeea. Parallel Computers
has announced two new models

of minicomputers with an option¬
al warranty covering the cost of
all maintenance for five years
(but not 50,000 miles).

The Parallel 300 XR Model 30
and Model 40, replacing the com¬
pany's 300 system family, are
based on redundant, self-check¬

ing architecture. All key compo¬
nents, including CPU, memory,

disk subsystems, and power sup¬
plies (with integrated, uninter¬
ruptible power systems), are du¬

plicated. If a component fails, its
twin maintains operation.

The Model 30 is made to sup¬
port eight users with 1 MU of

main memory, 84 MB of hard

disk, and a 1/4-inch streaming
tape. Tlie Model 40 supports up to
16 users with 2 MB of main
memory and 168 MB of hard disk
storage. Both machines are based
on a 68010 processor running at
10 MIIz, with Multibus. A bigh-
end configuration of either ma¬
chine allows support of up to 32
users with 8 ME3 of main memory
and 2-plus GB of disk storage.

Regarding maintenance, Brian
Knowles, Parallel’s Director of
Marketing, outlines three stages
of repair should the machine need
it. 'fhe first is built into the box
itself—both the 30 and 40 pro¬
vide automatic fault detection
messages to the user. Second,
remote diagnostics can be per¬
formed from Parallel headquar¬

ters. Finally, Parallel technicians
('an come to the field site.

Both the 30 and 40 are avail¬
able now. The base configuration
j)rice for the Model 30 is $59,900;
for the Model 40, $74,900. A
ty])ical high-end configuration,
depending on options, is priced in
the $80-100,000 range. Given
the traditional cost of mainte¬
nance for micros, one may con¬
sider |Durchasing the five-year
warranty for $9000. Though Par¬
allel's 300 system family is being
phased out, field upgrades are
available for $7000, and the up-

FORTRAN 77
COMPILER INCLUDES FULL SUPPOKL FOR MOTOROLA’S

MC68020/68881
Full ANSI 77 implementation

Full Screen Source Level Symbolic Debugger

Unix and C Interface (Unix is a trademark ot at i')

Generates 68000 and 68010 Code

Support for NS32081 and SKY FFP Math Hardware

ALSO AVAILABLE 68020/68881 MACRO ASSEMBLER

100% Motorola Compatible ' Includes C Interface

2X to 20X Faster Than Most Assemblers

absoft
SCIENTIFIC/ENGINEERING
SOFTWARE 4268 N. Woodward

Royal Oak, Michigan 48072

(313) 549-711 1 • TX 235608

94 UNIX REVIEW SEPTEMBER 1985
Circle No. 243 on Inquiry Card

Your Guide to Local Area Network Pertormance

LANSCAPES:
Local Area Network

Pertormance Protiles
The rush to install local area networks is on. Corporate data
processing professionals^ system integrators, OEMs, network
software developers and LAN companies themselves are
faced with a bewildering array of network options for
personal computers. The need is there to connect PCs into an
effective communications system, but can the available
products meet the criteria and specifications demanded by
both users and systems houses?

Managers now have an easy-to-use information source to
evaluate whether a network will perform as promised:
LANSCAPES—Local Area Network Performance Profiles.
LANSCAPES is a formalized measurement and evaluation
method which models performance characteristics of local
area networks designed to link IBM PCs and/or compatibles.

CONTENTS
This exclusive new management report, LANSCAPES, evaluates
the performance of network products from Fox Research (10-
Net), Orchid Technology (PCnet) AST RESEARCH (PCnet II),
3COM (EtherSeries & SServer), Corvus Systems (Omnishare &
Omninet) and the IBM PC Network. The performance evalua¬
tions were conducted by the independent informations system
research company, Cronotec, Inc. of La Jolla, Calif. Cronotec's
Local Area Network Metric Analysis System (LAN/MAS) maps
PC LAN products into two distinct, but complementary mod¬
els. Its Information Systems Model provides a consistent refer¬
ence for PC LAN physical and logical evaluation and the Sys¬
tem Performance Model empirically portrays system behavior.
The two models produce Performance Profiles which detail
and measure true network performance. Each model and the
entire testing and evaluation process is described in detail.
Qualified source listings, a matrix of text numbers and biblio¬
graphic references are provided.

Information Systems Model: With this model, networks are
mapped to the Operating Domain, the Communications Do¬
main, the Data Domain and the Applications Domain. To be ef¬
fective, a network must provide multi-user access to system re¬
sources by bonding with a PC's native operating system. To
give users true multi-user ability, LAN vendors must add func¬
tional capabilities to the Operating Domain In the form of
semaphores, file locking, file sharing and file security.

Cronotec's evaluations highlight a thorough review of key
changes made to the Operating Domain to determine the im¬
pact on system performance. In the Communications Domain,
LANSCAPES maps each network to the seven layers of the

Guaranteed No-Risk Offer Ml 8/85

MICRO COMMUNICATIONS Book Dept. • 500 Howard Street, San Francisco, CA 94105 • (415) 397-1881 • Telex: 278273

When ready in)une, please send me_copies of LANSCAPES: Local Area Network Performance Profiles for my staff and

associates at US$197 each. Each copy will be shipped with the free bonus software program, Dynamic Memory Editor.

After seven days of reviewing the report, if for any reason I find LANSCAPES not acceptable or useful, I may return it for a
prompt refund, and keep the bonus software. Dynamic Memory Editor, without charge.

□ Payment enclosed of US$_for-copies. (Calif., Georgia, III. and N.Y. residents: please add sales

tax.)
Charge: □ Visa □ MasterCard upon shipment.

Card No. _Expires _

ISO/OSI model. Network management, architecture and trans¬
missions are detailed. The Data Domain maps the network data
handling for organization, access, spontaneous and generalized
query and control. The Applications Domain moaels perfor¬
mance for applications software running on the network.
LANSCAPES maps the dependent functions of applications
software to the communications capability of the network to
model software performance.

System Performance Model: LANSCAPES measures network
performance by throughput and capacity with two measure¬
ments—system dependent metrics and system independent
metrics. Metrics are the count, time, rate and ratio measures of
task sequences, and processing transactions. These selected
series of task sequences in different environments and load
scenarios yield actual throughput and capacity.

LAN Performance Profiles: To show the performance results of
each LAN, the test results are described and then illustrated
with tables, charts and graphs. Each network Is measured
against its own performance goals to find out if it meets its own
specifications for data throughput and capacity.

FEATURES
Interpretative Text describes and defines the network evalua¬
tion environment for all configurations. Modeling techniques
are illustrated to simulate a variety of network applications.
Graphic Illustrations for each network performance profile
highlight key performance activities for selected processor
tasks.
Separate Network Profiles: Each network evaluation is de¬
scribed in total, with pertinent mapping to the ISO/OSI seven-
layer model.

FREE SOFTWARE WITH EACH REPORT
Included free of charge with each copy of the LAN¬
SCAPES is a powerful new software tool, CRONOzap,
Cronotec's Dynamic Memory Editor. The program comes
on a S-’A" floppy diskette formatted for tne IBM PC. This
powerful new utility is used to view, print and/or modify
main memory (RAM).
Because the screen is refreshed so quickly, it's possible
to view the activity in memory dynamically, as it oc¬
curs—as though you were watching the computer
"think." CRONOzap can also be installed on a server to
watch the data flow through the network buffers.

WHO SHOULD BUY LANSCAPES
LANSCAPES is intended for corporate data processing and MIS
professionals, system integrators, OEMs, software engineers
and others who are responsible for the design. Implementation
and modification of PC local area networks. Network manufac¬
turers will also be able to provide third-party support vendors
with this report as a scientific interpretation of network perfor¬
mance. The performance profiles were conducted at an inde¬
pendent laboratory where the networks were Installed on an
IBM PC/AT and four IBM PCs. Where a wrong decision in pick¬
ing a local area network could lead to disaster, the 64-page
LANSCAPES report at only $197 is an investment that will re¬
pay its modest cost hundreds of times over.

Sigmtiirp DatP

N^mp Title

r nmpAny

AHflr«s

City _State/Zip

ABOUT THE AUTHORS
Stephen L. Gubelmann has had 10 years of experience as a net¬
work designer. His positions have Included network systems
designer at CitICorp's Transaction Technology Inc. and man¬
ager of network systems development at Home Federal Savings
and Loan.

Robert Bennett has 17 years of technical, research and
management experience in data processing for insurance, fi¬
nance, health and manufacturing. His communications experi¬
ence includes corporate networks and distributed systems.

Circle No. 232 on Inquiry Card

U RECENT RELEASES

grades are eligible for the

warranty.
Parallel Computers, 3004 Mis¬

sion St., Santa Cruz, CA 95060.
408/429-1338.

Circle No. 239 on Inquiry Card

GXL+ VXL = ANN ARBOR

'l\vo new VDTs now available
from Ann Arbor Terminals come
loaded with plenty of smarts.

The VXL is an ANSI standard,
multi-host, multi-window termi¬

nal that is character-mapped for

alphanumeric applications. De¬
signed to accommodate the user
who prefers one rather than sev¬
eral terminals on a desk, the VXL

can work with up to four hosts
simultaneously, with the ability
to access IBM mainframes, DEC
minis, and/or PCs. The user can
switch from one host to another

with a single keystroke, even
while receiving results from other
hosts in other windows.

Twenty kilobytes of local dis¬
play memory are provided with
the VXL, and this memory may be
divided into up to eight pages,
each of arbitrary width and

u4th
THE UNIX/XENIX-compatible Forth:

• C primitives
• dynamic memory management
• direct-threaded
• UNIX Interfaces

• object-oriented Forth-source Included!

• 400-page manual and glossary
• no royalties for developers

New Low Prices!
Plexus, Sun, Intel 286: $495.00

PC XT, AT, Tandy: $195.00
Now! VAX, AT&T 3B

UBIQUITOUS SYSTEMS
13333 BEL-RED ROAD NE

BELLEVUE, WA 98005
206-641-8030

IINIX.IMI AIM XtNIXiIW' MK MOSDH

Circle No. 241 on Inquiry Card

height—up to 255 columns and
512 lines. The user can dynami¬
cally connect (and disconnect)

any page(s) to (from) any host(s),
and dynamically switch the key¬
board from host to host. Each

VXL page is a virtual terminal: it
can have its own setups and its
own key programming to optimize
it for efheient use with each host.
The screen density is dynamically
variable, from 80 to 160 columns
and 36 to 60 lines. Users may

work at whatever character size
they find most comfortable, yet

view and edit the contents of up to
two 8-1/2 X 11 sheets of paper
side by side when they wish. The
VXL keyboard is fully program¬

mable up to eight shift levels.
The Ambassador GXL + Plus

offers full-page alphanumerics,
raster-scan graphics, and a user-
definable character set. It has the

ability to transform mapping of a
specified window in the drawing
space to a specified region on the
screen. The character set can be
pre-set with any series of graphic
instructions including alternate
fonts, schematic symbols, or en¬
tire layers of graphics displays

EDPeople

SYSTEMS PROGRAMMER
Join this industry leader and continue to
develop a wide range of applications. Your
UNIX, C i assembly language is the key to the
dynamic opportunity. Salary $25-34K.

SR PROGRAMMER
Interested in developing, designing and main¬
taining new and current systems? One of the
nation's largest "state of the art" data centers
seeks highly promotable individuals Interest¬
ed in pushing the limits of the technology.
CALL TODAY, If you have Mainframe, Micro,
PLI, UNIX or C exp. Salary $30-45K.

FEE PAID (513) 224-0600

ROBERT HALF
RO. Box 756
Mid-City Station
28 N. Wilkinson Street
Dayton, Ohio 45402

Circle No. 240 on Inquiry Card

The VXL from Ann Arbor

Terminals.

that can be later recalled by
pressing a key. An alternate Math
and Greek character set is includ¬

ed for scientific applications.
Featured on the GXL I Plus is a

resolution of 768 x 600 dot pixels,
4096 X 4096 addressable, on a
15-inch green phosphor screen.
With Tektronix 4010/4014 com¬
patibility and VT 640 enhance¬

ments, the terminal supports
all popular graphics packages.
Other standard graphics features
include 11-line types for vector
drawing, point and incremental
plot modes, 16 polygon fill
patterns, selective erase, and a
mouse interface. The GXL + Plus
comes standard with an 18-to-
60-line-by-80-character display,
two pages of memory, and
full editing capabilities (offering
block mode and form-filling func-
tions). The keyboard is fully pro¬
grammable on up to 32 levels.
Transmission is character-by¬
character, line-by-line, or block
mode with speeds ranging from
1 10 to 19.2 Kbps.

rhe list price of the VXL termi¬
nal is 82795, and the GXL +Plus'
list is $3590. Ann Arbor sells to
OEMs (including DEC and IBM for
their machines running UNIX),

96 UNIX REVIEW SEPTEMBER 1985

CONCENTRIC^
ASSOCIATES, INC

WE DON’T
PRODUCE TRAINING.
We Produce Shell Programmers, C Programmers, Ada Program¬
mers, System Administrators, Kernel Hackers, Doc Preppies,

and Project Managers.
• We will work with you to find out what your people need to know.

• At no charge, we will propose a curriculum tailored so that your people
are immediately productive.

• Our instructors will deliver the courses or you can license the courses
and well teach your teachers.

Circle No. 293 on Inquiry Card

WE ARE ALSO COMMITTED TO BRING TO
MARKET A LINE OF SOFTWARE TGDLS
TARGETED AT PROGRAMMER PRODUCTIVnY
The first of these products is:

shacc-the shell accelerator-is a compiler for the Bourne shell. It translates Bourne shell pro¬
grams into C and then invokes the C compiler to produce an “a.out" file. The C code that
is generated is well-structured and very readable, so it can be further optimized by hand if
you like.

shacc allows you to write production code in’the Bourne shell; Do the fast prototyping in shell
and then shacc it and ship it.

Call us for information about our on-line demonstration.

shacc

By Paul Ruel

Concentric Associates

SHACC UP wrrhL.
CONCENTRJCJ

ASSOCIATES,INC

For further information on our Educational Services or shacc, call or write:
Linda Cranston/ Concentric Associates, Inc/ One Harmon Plaza/ Secaucus, NJ 07094

201-866-2880 See us at UNIX EXPO, New York, Booth #130

Circle No. 294 on Inquiry Card

U RECENT RELEASES

Ann Arb()r\s GXL-^Plus Terminal.

major customers, and end users.
Ann Arbor Terminals, Inc.,

61 75 tJackson Rd., Ann Arbor, MI
48103. 313/663-8000.

Circle No. 236 on Inquiry Card

SUN IN THE BIG BLUE WITH
MORNING STAR

For those with a Sun worksta¬
tion and the desire to ofhoad
heavy calculations or hook up
to a lar^e information exchange

base, there is now a link to

consider. Morning Star Teehnol-
ogies, whose eustomers include
UNIX vendors MassComp, Pyra¬
mid. and vSperry, has announeed

that its UNIX communications

products are now available to
connect Sun workstations to IF3M
systems.

For the Sun-2/1 OOU, 2/120,

and 2/170 stations. Morning
Star offerings include MST/X.25
and MST/HASP protocol soft¬
ware, which run on models of the
Morning Star Horizon series eom-
munication processors. The com¬
munication systems are ready as
drop-in products and include a

Sun operating system device driv¬
er. The MST/X.25 packet switch¬
ing protocol is Telenet and Uninet
certified and complies with DON

recommendations: it sells for
82995. The MST/HASP package
emulates the full implementation
of the IBM 360/model 20 RJE
workstation: it sells for $2400.

The two Horizon series com¬
munication processors, residing
on boards that slip into the work¬
station and plug into Multibus (a
product plugging into VME bus
will be out soon. Product Support

Manager Jamey Laskey said), are

based on a 68000 processor, have
a minimum of 128K DRAM, and
use the Morning Star Unidriver
device driver. The Horizon Model

200 has two serial ports, runs at
speeds up to 19.2 Kbps, and
retails for $1995. The Model 800
has eight serial ports, up to four
channels of DMA, runs at 64 +

Kbps, and retails for $2395.
Also on the horizon, so to

speak, are Morning Star products
that include SNA/3270, SNA/
3770. and Bisync 3270 and 3780:
these are due out this autumn
and will be compatible with cur¬

rent offerings.
Morning Star Technologies,

4510 Kenny Rd., Suite 204, Co¬
lumbus, OH 43220. 614/451-
1883.

Circle No. 235 on Inquiry Card

STAY WELL WITH INTEL

Intel Corp., increasing its verti¬
cal market activity beyond the
finance and insurance indus¬
tries, has announced a $20 mil¬
lion, three-year volume agree¬
ment with Provider Automated
Services, Inc. (PAS), a subsidiary
fo Blue Cross/Blue Shield of Flor¬
ida. Under the agreement, the
two companies will jointly de¬
velop supermicro systems for the
health care industry.

The systems will be based on
Inters Multibus-based 286/310
supermicros running Xenix 3.0.
The machines will be shipped to

Jacksonville, where PAS's medi¬
cal administration software pack¬
age will be added. PAS is also
responsible for marketing the
product: its previous products are
available in 39 states. The Intel-
PAS systems are being released
this month.

Provider Automated Services,
Inc.. 8659 Baypine Rd., Suite
200, Jacksonville, FL 32216.
904/739-6703.

Save Time and Money
on Data Entry

Use ZIPLIST to automatically
look up city, state and county infor¬
mation based on zip code. Table of
48,000 zips allows significant sav¬
ings on data entry, error correc¬
tions and file maintenance. This set
of floppy disks, including easy in¬
structions, is just $149. Most
popular 5V4” and 8” formats are
available. Hard disk recommended.
Call or write for free information.

DCC Data Service
1990 M Street, N.W. Suite 610

Washington, D.C. 20036

CaU toU-free 1-800-431-2577

In DC & AK 202-452-1419

Q'Nial
The new, sophisticated,

interactive programming system
for

UNIX Workstations

NIAL Systems Inc.
1742 Second Ave, Suite 159,
New York, NY 10128
1-800-267-0660 (U.S.)

Q’Nial is a registered trademark
of Queen’s University at Kingston

Circle No. 238 on Inquiry Card

98 UNIX REVIEW SEPTEMBER 1985

Circle No. 237 on Inquiry Card Circle No. 234 on Inquiry Card

LANGUAGE TOOLS
Continued from Page 37

somewhat restricted and well understood domain to
be successful, but they are very attractive when
they make sense and can be implemented
efficiently.

DOWNSTREAM

Lexical and syntactic analyses of languages are
well understood, but what do we do once we have
recognized a language? In many simple cases, no
further tools are needed; the yacc actions can
directly call functional routines in the application
program, perhaps with arguments built up from
yacc values.

In more complicated situations, the parser builds
one or more data structures to represent the input,
and then invokes routines to further process them.
P'or example, in many traditional compilers, the
parser generates both a parse tree (or other data
structure) and calls to symbol table routines.

Because of the portability of the UNIX system, the
language designer may have to write a language
without knowing anything about the host machine
on which it will run. There are two traditional
approaches to this problem. One is to cause the
compiler for the new language to generate some
language that is already in common use on the
target systems. For example, RATFOR and EFL
generate Fortran, and C+-f generates C. Several
companies market compilers that will read Fortran
or Pascal and convert it to C. This technique of pre¬
processing the language can be surprisingly diffi¬
cult to do well, but it can attain the goals of
portability and efficient output code.

Another technique is to take some compiler that
is used on many different machines, and cause the
new language to share the code generator with this
compiler. For many years, Fortran and Pascal have
shared code generators with the portable C compiler
code generator, and there are other languages
available that use code generators for Pascal p-code.
While these techniques are less efficient than a
custom-built compiler, and rarely are totally porta¬
ble. they have proved easy to implement and useful
in practice.

THE FUTURE OF LANGUAGES

Languages are used to communicate between
computers and people. The UNIX command lan¬
guage style was a reaction to the chatty nature of
some other operating systems (“are you sure you
really want to quit now?“) and the obscurity of
others, such as OS/360. Now, systems such as the

Apple Macintosh have popularized a different way
by which people can communicate with computers,
using menus and icons. The decreasing cost of
memory and processing power has made this an
approach that is not much more costly than
traditional ones. At the same time, smart editors
have appeared that apply similar principles to the
editing of more conventional languages. The AT&T
UNIX PC, for instance, supports a menu interface to
a number of administrative and office utilities,
while still providing the experienced user with the
means to use the power of the underlying UNIX
system.

Will such interfaces eliminate languages as we
know them? For some applications, 1 think it is clear
that they will. Menus have a clear advantage for
such sensitive operations as inserting new users
into the system and doing file backup: the bit rate of
human interaction is low, the operations are
infrequent, and the consequences of error are
serious.

Menu interfaces are restricted, however, in some
ways that appear to be fundamental. How, for
example, can we make a shell script out of icon and
menu selections? (We face a similar problem
making an editor script with vi or emacs.) We will
always want to make new operations out of old, and
build up complicated things out of simple ones.
(Imagine a word processor where each word had to
picked by menu out of a dictionary, and then
modified by menu to become either plural, past
tense, or whatever, loping is a skill that takes a
while to learn, and it is prone to error, but the
overall bit rate is much higher than what menus
have to offer.) Because experienced programmers
will always want terser commands with higher bit
rates, the challenge is to retain the high efficiency
and abstraction of current languages while captur¬
ing the safety and ease of newer techniques.
Application designers certainly have their work cut
out for them!

Stephen Curtis Johnson has a BA from Haverford
College and an MS and Ph.D. from Columbia Univer¬
sity, all in Pure Mathematics. He has worked for AT&T
Bell Labs since 1967. After early work in psychometrics,
he has done research in computer algebra, parsing,
complexity theory, code generation, portability of
compilers and operating systems, and VLSI design. He
is the author of a number of UNIX commands,
including yacc, lint, the portable C compiler, and the
first versions of spell and at. He is currently the head of
the Language Development Department that provides
computer languages for AT&T computers under System
V m

UNIX REVIEW SEPTEMBER 1985 99

CALENDAR

EVENTS

SEPTEMBER

September 18-20 New York: "UNIX EXPO”. Contact National
Expositions. Don Bcrey. 14 W. 40th St., New York, NY 10018.

212/391-91 11.
September 26-28 Boston: 8th Northeast Computer Faire, to be
augmented with UNIX Systems Expo/85-Fall. Contact Com¬
puter Faire. Inc., 181 Wells Ave., Newton. MA02159. 617/965-

83,50.

TRAINING

Note: Below are listed the dates, locations, titles, and
contacts for UNIX-related training courses. For registration
and further information on particular courses, contact the
firm cited. Traitiing firm addresses and phone numbers are
listed alphabetically at the end of the calendar.

SEPTEMBER

September 2-3 London: "Shell Programming". Contact CTG.
September 3-5 New York: "UNIX Shell Programming". Contact

LUCID.
September 3-6 Washington. DC: "UNIX for Users/UNIX Shell

Programming". Contact USPDI.
September 4-6 Santa Monica. CA: "INword Word Processing

Workshop". Contact Interactive.
September 4-6 London: "Using Advanced UNIX Commands".

Contact CTG.
September 4-6 London: "UNIX Internals". Contact CTG.
September 9-11 Santa Monica. CA: "UNIX Fundamentals".

C^ontact Interactive.
September 9-12 New York: "UNIX System Administration".

Contact LUCID.
September 9-12 New York: "C Programming’*. Contact USPDI.
September 9-13 Trumbull. CT: "Advanced UNIX". Contact

Bunker Hamo.
September 9-13 Chicago and Los Angeles: "C Language

Programming”. Contact CTG.
September 9-13 Philadelphia: "C Programming Workshop".

Contact Plum 1 lall.
September 9-20 Cincinnati: "UNIX for Application Dcvclojj-

crs". C-ontact ITDC.
September 10-12 'rrumbull. CT: "Diagnostic UNIX *. Contact

Bunker Kamo.
September 10-12 Fk)ston and Washington. DC: "UNIX Admin¬

istration". Contact CTG.
September 10-13 Los Angeles and Washington, DC: "UNIX: A
Comi)r('hcnsivc Introduction *. Contact ICJS.
September 12-13 ,Santa Moni(‘a, CA: "Using the Shell *.

Contact Interactive.
September 16-17 Santa Monica. CA: "System Administrator’s
Ov(‘rvicw '. Contact Interactive.

September 16-17 Chicago and Los Angeles: "Shell Program¬

ming". Contact CTG.
September 16-17 Boston and Washington, DC: “Advanced C
Programming Workshop". Contact CTG.
September 16-18 Cambridge, MA: "C Technical Seminar".
Contact CL Publications.
September 16-19 Callaway Gardens, GA: “UNIX OS: The F'irst

Step". Contact AT&T.
September 17-18 Trumbull, CT: ““UNIX/C Applications’*.
Contact Bunker Ramo.
September 17-19 St. Louis: ““SNA Architecture and Implemen¬
tation ”. Contact CSI.
September 17-20 San Diego and Washington. DC: ““Program¬

ming in C". Contact ICS.
September 17-20 New York: ‘“Advanced C Programming".
Contact LUCID.
September 18-20 Chicago and Los Angeles: "Using Advanced
UNIX Commands". Contact CTG.
September 18-20 London: ““UNIX Administration *. Contact

CTG.
September 18-20 Boston and Washington, DC: “Advanced C
Programming Under UNIX““. Contact CTG.
September 18-20 New York: “ Comprehensive Overview of the
UNIX Operating System". Contact Digital Educational Services.
September 18-20 Santa Monica, CA: “ Interactive Networking
Tools ”. Contact Interactive.
September 23-24 London: ““Advanced C Programming Work¬

shop". Contact CTG.
September 23-24 Raleigh. NC: ““The Concepts of Object
Oriented Programming". Contact PPL
September 23-24 Santa Monica. CA: “Advanced Commands
for Programmers". Contact Interactive.
September 23-25 Boston: ““C Data Concepts for Programmers“*.
Contact Sessions and Gimpel.
September 23-27 Chicago and Los Angeles: “‘UNIX Internals".

Contact C'PG.
September 23-27 Boston and Washington, DC: "Berkeley
Fundamentals and esh Shell". Contact CTG.
September 23-27 Trumbull. CT: "Advanced C". Contact

Bunker Ramo.
September 23-27 Cincinnati: "UNIX Systems Administra¬

tion*. Contact ITDC.
September 24-26 Los Angeles: “SNA Architecture and Imple-
mentation■*. Contact CSI.
September 25-27 London: “Advanced C Programming Under

UNIX *. Contact CTG.
September 25-27 vSanta Monica. CA: "UNIX Architecture—A
Conceptual Overview". Contact Interactive.
September 30-October 3 Chicago: "UNIX for Users/UNIX Shell

Programming *. Contact USPDI.
September 30-October 4 London: "Berkeley Fundamentals

and esh Shell**. Contact CTG.
September 30-October 4 Trumbull. CT: "Intro to UNIX *.

100 UNIX REVIEW SEPTEMBER 1985

Only Sperry can make the
following four statements.

Our PC runs the XENIX™
system, as well as MS-DOS™.

Our 4 new microcomputers
run the UNIX system.

Our new minicomputer runs
the UNIX system.

Our Series 1100 mainframes
run the UNIX system.

All of which means there is
a great deal we can do for you.

For instance, our family of
computers based on UNIX
systems has incredible trans¬
portability for all your software.

And being able to accom¬
modate from two to hundreds
of users, it’s impossible to out¬
grow our hardware.

Of course, this linking of all
your computer systems can add
measurably to your productivity.

And a fast way to find out

more is to get a copy of our
Sperry Information kit. For
yours, or to arrange a demon¬
stration at one of our
Productivity Centers, call
1-800-547-8362 (ext. 60).
‘UNIX is a trademark of AT&T BrdI Laboratories
XENIX and MS DOS are Irademarks of Microsoft
Corporation
©Sperry Corporation 1985.

Introdudng an idea
that makes obsolescence obsoleta

The UNIXoperating system
fiom PC to maiimnme.

Circle No. 292 on Inquiry Card

CALENDAR

Contact Ikmker Ramo.
September 30-October 4 Santa Monica, CA: “The C Program¬

ming Language*’. Contact Interactive.
September 30-October 11 Cincinnati: “C Programming Lan-

guagc“. Contact ITDC.

OCTOBER

October 1 New York and Washington, DC; “UNIX Overview”.

Contact CTG.
October 1-3 I lartford, CT: “SNA Architecture and Implementa¬

tion”. Contact CSI.
October 1-3 Chicago and Los Angeles: “UNIX Administration”.

Contact CTG.
October 1-4 Baltimore: “UNIX: A Complete Introduction”.

Contact ICS.
October 1-4 New York: “UNIX System Internals”. Contact

LUCID.
October 2 Trumbull. CT: “UNIX Marketing”. Contact Bunker

Ramo.
October 2-4 New York and Washington, DC: “UNIX Fundamen¬
tals lor Non-Programmers”. Contact CTG.
October 3-4 lk)Ston: “C Data Concepts for Managers”. Contact

Sessions and Gimpel.
October 7-8 Chicago and Los Angeles: “Advanced C Program¬

ming Workshop ”. Contact CTG.
October 7-9 New York and Washington, DC: “UNIX Fundamen¬
tals for Programmers”. Contact CTG.
October 7-9 Santa Monica, CA: “IS/WB Fundamentals”.

ACUITY® business software
is compatible with any budget,

and all these systems:
AT&T 3B's
Motorola
Charles River Data
Sun Microsystems
All Unix based micros
All Unix “look-alikes”

Plexus
Convergent
Cromemco
Altos
Harris/VOS
VAX/Ultrix

Gould
Sperry

Momentum
Dual

Harris/Unix
VAX/VMS

Serving general accounting, wholesale, distribution,
manufacturing and project/job costing applications on
over 30 different machines, ACUITY allows you to
select from individual modules to build a fully inte¬
grated software system specifically for your needs.

Accounts Payable # Accounts Receivable
General Ledger • Fixed Assets • Payroll
Customer Order Processing • Inventory

Purchasing/Receiving • Project Management
MRP • Master Scheduling • BOMP

Project Scheduling • Labor Projections
Work Breakdown Structure

For more detailed information, call 619/474-6745.

COmPUTER
COGDITIOn

225 West 30th Street, National Cin-, Qtlifornia 92050

Circle No. 246 on Inquiry Card

Contact Interactive.
October 7-9 New York: “Office Automation ”. Contact LUCID.
October 7-10 Washington. DC; ‘C Programming *. Contact

USPDI.
October 7-11 Absecon, NJ: “C Programming Workshop *.

Contact Plum Hall.
October 8 London; “UNIX Overview ”. Contact CTG.
October 8-10 Trumbull. CT: “Diagnostic UNIX”. Contact

Bunker Ramo.
October 8-11 Baltimore: “Programming in C”. Contact ICS.
October 9-11 Chicago and Los Angeles: “Advanced C Program¬

ming Under UNIX”. Contact CTG.
October 9-11 London: “UNIX Fundamentals for Non-Program¬

mers*. Contact CTG.
October 10 Palo Alto, CA: “Introduction to C for Programmers”.

Contact Berkeley Decision/Systems.
October 10-11 New York and Washington. DC: “Shell as a
Command Language”. Contact CTG.
October 10-11 Santa Monica. CA: “IS/WB System Administra-
tor s Overview”. Contact Interactive.
October 14-15 Santa Monica. CA: “Using Ten/Plus”. Contact

Interactive.
October 14-15 Columbia, MD: “C Data Concepts for Manag¬
ers*. Contact Sessions and Gimpel.
October 14-16 London: “UNIX Fundamentals for Program¬

mers*. Contact CTG.
October 14-18 Cincinnati: “UNIX for End Users”. Contact

riDC.

Version 3j0 Available Now!

The Reliable High Perfomumce APL
for UNIX* Systems

Dyalog APL is fast!
Version 3.0 is up to 10 times faster than previous versions!

Dyalog APL is functional!
Nested Arrays
Full Screen Editor
Full Screen Data Manager
Event Trapping
Interface to all UNIX* Facilities
Optional Graphics

Dylalog APL is reliable!
Dyalog APL has been in commercial use for over two years
and is available NOW for most UNIX* Systems so call or
write today.

MIPS Software Devetopment, INC
31555 W. 14 Mile Rd. #104
Farmington Hills, MI 48018 ' Imprmcmcno itt a funilMMi erf ayaicm and u%a$c

(313) 855-3552 ‘CNIX i* a ir«lcmafli irf ATAT Bell Lab<wiuif<»

Circle No. 245 on Inquiry Card

102 UNIX REVIEW SEPTEMBER 1985

CONTACT INFORMATION

AT&T Information Systems, Institute for Communica¬
tions and Information Management, PO Box 8, Pine
Mountain, GA 31822-0008. 800/247-1212.

Berkeley Decision/Systems, Inc., 150 Belvedere Ter¬
race, Santa Cruz, CA 95062. 408/458-0500.

Bunker Ramo Information Systems, Trumbull Indus¬
trial Park, Trumbull, CT 06609. 203/386-2000.

CL Publications, 131 Townsend Street, San Francisco,
CA 94107. 415/957-9353.

Computer Technology Group (CTG), 310 S. Michigan
Avenue, Chicago, IL 60604. 800/323-UNIX, or in IL
312/987-4082.

Communications Solutions, Inc. (CSI), 992 S. Saratoga-
Sunny vale Road, San Jose, CA 95129. 408/725-1568.

Digital Educational Services, Digital Equipment Corp.,
12 Crosby Drive, Bedford, MA 01730. 617/276-4949/

Information Technology Development Corp., 9952
Pebbleknoll Drive, Cincinnati, OH 45247. 513/741-
8968.

Integrated Computer Systems, PO Box 45405, Los
Angeles, CA 90045. 800/421 -8166, or in CA, 800/352-
8251.

Interactive Systems Corp., 2401 Colorado Avenue, 3rd
floor, Santa Monica, CA 90404. 213/453-8649.

LUCID, 260 Fifth Avenue, Suite 901, New York NY
10001. 212/807-9444.

Plum Hall, 1 Spruce Avenue, Cardiff, NJ 08232. 609/
927-3770.

Productivity Products International, Inc. (PPI), 27 Glen
Road, Sandy Hook, CT 06482. 203/426-1875.

Sessions & Gimpel Training Associates, 474 Washing¬
ton Street, Holliston, MA 01746. 617/429-6350.

Silicon Valley Net (SV Net), PO Box 700251, San Jose
CA 95170-0251.415/594-2821 (Grant Rostig).

Uniq Digital Technologies, 28 S. Water Street, Batavia
IL 60510. 312/879-1008.

US Professional Development Institute (USPDI), UNIX
and C Workshops, 1620 Elton Road, Silver Spring, MD
20903. 301/445-4400.

October 14-18 Absecon, NJ: “Advanced C Topics Seminar *.
Contact Plum Hall.

October 15 Dallas and San Francisco: “UNIX Overview”.
Contact CTG.

October 15-17 New York: “C Language Fundamentals”.
Contact LUCID.

October 15-18 Palo Alto. CA:\ “UNIX: A Complete Introduc¬
tion”. Contact ICS.

October 16-18 Dallas and San Francisco: “UNIX Fundamen¬
tals for Non-Programmers”. Contact CTG.

October 16-18 Santa Monica, CA: “Customizing Ten/Plus”.
Contact Interactive.

October 16-18 Columbia. MD: “C Data Concepts for Program¬
mers”. Contact Sessions and Gimpel.

October 17-18 London: “Shell as a Command Language”.
Contact CTG.

October 21-22 Boston: “The Concepts of Object-Oriented
Programming”. Contact PPI.

Please send announcements about training or events of
interest to: UNIX Review Calendar. 500 Howard Street. San
Francisco. CA 94105. Include the sponsor, date and location
of event, address of contact, and relevant background
information.

eS68020
SOFTWARE TOOLS

WE ARE PROUD TO ANNOUNCE THE BIRTH OF
THE NEWEST MEMBERS OF OUR 68000 FAMILY

... YOUR 68020 TOOLS ARE HERE!

TOOL KIT
• 68000/10/20 /Assembler

Package:
- Macro Cross/Native

Assembler
- Linker and Librarian
- Cross Reference Facility
- Symbol Formatter Utility
- Object Module Translator

• Green Hills C 68000/10/20
Optimizing Compilers

• Symbolic Debuggers

AVAILABILITY
VAX. microVAX. 8600, Sun.
Pyramid. Masscomp. IBM/PC.
OASYS Attached Processors for
VAX and PC. others. Runs under
VMS. Bsd 4 2. System V. MS/DOS.
dozens more.

You name it...
We provide a "One-Stop Shopping"
service for more than 100 products
running on. and/or targeting to. the
most popular 32-. 16- and 8-bit micros
and operating systems

* Written in C; fast, accurate,
portable.

* Supports 68000 and 68010.
* 5.000 line test suite included.
* EXORmacs compatible.
* Produces full listings and maps.
* Outputs S-records and Tek-Hex

formats.

FEATURES >
Runs native or cross.
Extensive libraries.
Supports OASYS compilers.
Generates PROMable output
and PIC.
Full Floating Point support

Over WO Other OASYS software tools to choose from.

A Division or XEL

60 Aberdeen Avenue. Cambridge. MA 02138 (617) 491-4180

Circle No, 244 on Inquiry Card

UNIX REVIEW SEPTEMBER 1985 103

THE LAST
WORP
Letters to the Editor

THE ZERO CAPER

Dear UNIX REVIEW,
One of the things I hate about

editing a magazine, as I used to do,
is chasing typographicals. Writing
notes about them is truly painful.

But there is a typo in the Febru¬
ary edition in which the Zilog Sys¬
tems Series 2 product release ap¬
pears [Recent Releases], that may
cause tangible problems, so 1
thought rd better note it.

The story indicates that the ma¬
chine offers “support for up to four
users." In fact, the new Series 2
supports 40 users. The difference could be material;
some of the sales guys are complaining that it makes
them look like a Fortune system.

Dick Davies
Zilog, Inc.

San Francisco

BUGS? WHERE?

Dear UNIX REVIEW,
Please check things a bit more closely before sug¬

gesting they’re bugs! On page 77 of the April issue
[Problem Solver], you wrote; “In system V, the bug can

be fixed ...”
It is not necessary to fix the System V init to do what

you want. In fact, you’re doing something I see quite
often. You’re “fixing” a new version to look more like
an old version rather than bother to learn any new
features! System V init(lM)/inittab(4) provides an ex-
trcmcly powerful tool for automatic configuration un¬
der virtually any situation. 1 wish you’d spend some
time trying to understand how it works. If there is a
change in a new release of UNIX, it is clearly there for a
purpose!

Just some facts about System V (you can look up

104 UNIX REVIEW SEPTEMBER 1985

the details):

1) Via /etc/inittab, it is trivial to
invoke a shell that goes through
root’s (or another user’s) .profile
by executing as the command su
- [username]. Hence, the “bug
fix” is not necessary. (The “-”
flag says fork a -sh shell.)

2) Further, it’s not necessary to
put your administrative stuff in
.profile (nor is it recommended).
The /etc/rc file exists for this
purpose. Your “30 seconds to

stop me before going multi is in fact a matter of
structuring your re file thus;

« get current and previous run level

set- who -r‘

RunLevel=$7

LastRL=$9

case ■ SRunLevel'■ in
S) « Single User

echo ■ Going Multi in 30 seconds''

echo • • (type DEL/Break to interrupt)

sleep 30

init 2

2) « Level 2 (Multiuser)

whatever actions needed

esac

Since who -r also provides info on the “previous
run level” and the number of times the current run
level has been entered since boot, the rc file can
handle conditions such as “the first time entering
multiuser after boot” and “entering level N after

For one week in Sept^

the heart of the UNIX universe
• A tutorial program designed and developed by AT&T

—the most respected source for the UNIX System.

• A conference examining the advantages of UNIX
solutions in the business environment.

Plan now to attend and profit from
THE PROVEN UNIX MARKHPLACE.
For all the details contaa: UNIX EXPO 14 Wfest 40th Street, New York, N Y

10018 Telephone: 212-391-9111. TELEX: 135401 DIMCOMM,

Circle No. 299 on Inquiry Card

answers to meet their business needs...and come a^
with a full understanding of UNIX solutions and
applications.

Take advantage of the best UNIX has to offer:

• An exhibition featuring over 200 of the leading over
suppliers of UNIX based hardware, software and services.

UNIX'f^ is a rc.RisIcrcd trademark of Bell Labs UMlXFXPO is nnt i ..u.

llll
lH

ilti

Jthe last word

being at level M". r-'urther. inittab ineludes action
designators such as boot and powerfail that allow
additional shell scripts or commands to be invoked
only under these special circumstances.

3) The lest “if ($$ <5) . . is, of course, a pretty
sloppy way to determine if .cshrc was invoked by
init. {depending on which version of UNIX you're
using, there may be more or less processes run
before the execution of csh. If more. $$ => 5: if
less. $3 may in fact be reassigned when the process
IDs wrap around to 1 again. (Typically, the maxi¬
mum pid is 30000. Then pid numbers start over,
skipping any pids still in use.) Of course, with the
System V features listed above, this test is not
necessary.

4) By using .cshrc. you're encouraging what may be
a real performance hog. Note that .cshrc is invoked
every time a new csh is forked. This can lead to a
lot of unnecessary command execution that the
user typically does not know about. In your exam¬
ple, whenever user root happens to execute a csh
script, the “if ($$ <5..." code is executed again.
(Also think about what happens if you have

New from Image Network!

Documenter’s Workbench®
for laserprinters and typesetters.

DWB is troff, eqn, tbi, and pic
interfaced to raster printing devices.

Our existing XROFF product allows DWB
to work with the following systems and printers;

• System III
• V7
• VAXIVMS
• AmdahllUTS
• Xenix
• UNOS

• Xerox 2700, 3700
• Xerox 8700, 9700

• System V
• Berkeley 4.2
• VAX/Ultrix
• IBM/PC MS/DOS
• Eunice
• UniPlus^

• DEC LN01S, LN03
• APS-5 typesetter
• Compugraphic 8400

Use DWB with a laser printer to make high quality
diKuments or to make proof copies before typesetting.

Call or write to tell us your printing requirements!

Image Network, (408)746-3754,
424 Palmetto Drive, Sunnyvale, CA, 94086-6760

’'Pocumenter’s Workbench is u trademark t)t AI& 1 Ikll l.afx>r;itf)rics

Circle No. 249 on Inquiry Card

106 UNIX REVIEW SEPTEMBER 1985

SlIELL=csh and do a make!)

5) Just about everything you mentioned in the way
of automation has already been made available by a
number of vendors, including AT&T on the 3B2.
We. in the UNIX community, need to get beyond
telling our users how to do things like you've de¬
scribed in your article. UNIX will never be accepted
in the business world if every reader of UNIX RE¬
VIEW starts hacking their inittabs. It's very power¬
ful. and lots of fun, but let's package all this stuff so
tlie users can get their Job done and we can move on
to more produetive hacking.

Finally. I'd recommend you get ksh (the Korn shell)
from the AT&T "Toolchest”. Now that ksh is available
outside of AT&T (and the code compiles and runs on
everytliing from PC/IX to System V, 4.2BSD, V8. and
maxi-UNIX), there's simply no reason for anyone to
consider using csh. (Unless, of course, it's “loyalty to
the past". 1 know a number of people that still use ed
instead of vl.)

Chuck Flink
AT&T Technologies
Fredericksburg, VA

Q-CALC

A superior spreadsheet on UNIX*

As powerful as Lotus 1-2-3*

large spreadsheet
many business functions
complete GRAPHICS package
translates 1-2-3 models into
Q-CALC
already ported to: VAX, Callan,
Fortune, 3B2, Cyb, Plexus, Codata,
Cadmus, Masscomp, Sun, etc.
Ideal for VARs/ISVs

Available since Jan. ’84
For more information write/call

Quality software Products
348 S. Clark Drive

Beverly Hills, CA 90211
213-659-1560

* Lotus 1-2-3 is a trademark of Lotus Development
Corp. UNIX is a trademark of AT&T.

Circle No. 250 on Inquiry Card

COMPLETE
YOUR

UNIX REVIEW
LIBRARYI

Company

Address .

city _
M/C or VISA #

Exp. Date _

June/July 1983—UNIX on the IBM/PC
August/September 1983—Sritek and Venix .
October/November 1983—UNIX Typesetting
December/January 1984—Vi and Emacs . . .
February/March 1984—UNIX Databases . . .
April/May 1984—Menu-based User Interfaces
June 1984—Big Blue UNIX .
July 1984—The AT&T Family .
August 1984—Documentation.

September 1984—System Administration . . .
October 1984—UNIX on Big Iron
November 1984—User Friendly UNIX
December 1984—Low Cost UNIX . . :.
January 1985—Evolution of UNIX.
February 1985—UNIX Portability.
March 1985—Performance.
April 1985—UNIX Networking.

May 1985—Distributed Resource Sharing
June 1985—UNIX Applications ..
July 1985—Office Automation.

August 1985—Database Intricacies . j.
September 1985—Languages.

Back issues are S4.95 each including postage.
Payment in advance is required. Send this order
form with check (US funds payable at US bank only)
or credit card information to. REVIEW Publica¬
tions, 901 S. 3rd St., Renton, WA 98055.
Additional S 1.00/issue for foreign mail.

I

Name_

State — Zip

UNIX REVIEW SEPTEMBER 1985 107

□ □
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

ADVERTISER'S INDEX

Absoft.94
Ac cess Methods Inc.32
Aclax Inc.90
Advanced Ergonomic Management.86

A'l'&T Information Systems.67

B.A.S.I.S.76
Basmark Corp.62

bbj Computer Services .75
Bell Technologies. 11
Brandon Consulting .49

Ceegen Corp.91
Century Software .87
Cleo Software .71

CMl Corp.33

Cogitate.86
Communications Research .32

Computer Cognition . 102

Computer Technology Group.73

Concentric Associates.97
Corporate Microsystems . 19

COSI .83
DCC Data Service .98

DSD Corp. 17

Dynacomp.77
Emerging Technology Inc.9

Franz, Inc.21

Gould .84
Greenhills Software.38
Handle Technologies.Cover II
Image Network . ^96
Information Technology Development Corp. . . 57

Interactive Systems Corp.
Lifeboat Associates.
Lions Gate Software .
Marc Software.
Micro Communications.

MIF^S Software.

NETI .
N.I.A.L.
Oasys .
Prior Data Sciences.
Quality Software Products.

Raima Corp.
Relational Database Systems . .

Robert Half.
Santa Cruz Operation.

Scientific Placement .
Software Development Systems .

Silicon Valley Software.

vSperry Corp.

Syntactics.
Ubiquitous Systems.

Unbound, Inc.
Unipress Software.

Unitech.
University of Toronto.

UNIX Expo .
UX Software .

Verdix.
XED/Computer Methods.
Zanthe Information Systems . .

. 13

.93

.89

. 74,75

.95

. 102

Centerspread
.98
. 103

.79

. 106

.60

. 1,2,3

.86

.47

.66

.41

25,27,29,31
. 101
. 15
.96
.26
59,61,63,65
. 16
.81
. 105
. . . Cover IV
.30
.7
.... Cover III

COMING UP IN OCTOBER

UNIX and Universities

• The Symbiotic Relationship

• Historical Perspectives

• Keeping UNIX Fresh

• Benefits to Industry

• Dangerous Blind Spots

108 UNIX REVIEW SEPTEMBER 1985

"Ylatune Ompo^A 3eiu
ReAtnictionA on JhoAe
Daninq Cnouqh to J[e€ui"

ZIM is a fully integrated fourth
generation application development
system designed for leading system
integrators and corporate and
independent applications developers.

^COMPLETE DEVELOPMENT
ENVIRONMENT
-Report Writer
-Forms Painter and Manager
-Data Dictionary
-Application Generator
-Non-procedural Programming
Language

-Compiler
-C Language Interface
-Runtime System

*POST RELATIONAL
-Entity Relationship Model
-Powerful extension of Relational
Model

^MAINFRAME POWER,
FUNCTIONALITY AND
PERFORMANCE

^APPLICATIONS PORTABILITY
-MS-DOS, UNIX, XENIX, and QNX

*MULTI-USER
-Full transaction processing control

^NETWORKING
^APPLICATIONS LIMITED ONLY

BY HARDWARE
*BUILT-IN STRATEGY
OPTIMIZER

*ENGLISH-LIKE LANGUAGE
•quality product support
ZIM is a mainframe system that runs
on micro-computers and on super
micro-computers. If you want
mainframe power, speed, flexibility and
freedom from arbitrary limitations all
at a micro price, talk to us about an
evaluation system.
Dealer inquiries are welcome.

The Information Interface

Z4NTHE

m

1785 Woodward Dr., Ottawa, Ontario |
K2C0R1 (613)727-1397 ^ /

MS-DOS and XENIX are Microsoft Corp. trademarks. ^
UNIX is an AT&T trademark. QNX is a Quantum /
Software Systems trademark. f

Circle No. 288 on Inquiry Card

The Language for a New Generation
Portability. UX-Basic™ application

programs execute unchanged on any UNIX’'”
machine and are completely device independent.

Power. UX-Basic contains the building
blocks for efficient application program develop¬
ment. It also allows you to tap the full power of
UNIX and gives you direct access to data bases.

Productivity. UX-Basic is friendly and
easy to learn and use. The interactive program¬
ming environment provides syntax checking as
well as real-time debugging and testing.

Performance. UX-Basic ^ves you speed
when you need it with our efficient pseudo-code
compiler/runtime package. We are constantly
working to keep UX-Basic’s performance at the

leading edge.

Profit. UX-Basic programs are structured,
modular and readable. Maintenance and support

are easy.

Perfect for UNIX... a new generation of
computers... a new generation of computer

users.

UX Software, Inc.
10 St. Mary Street, Toronto, Canada M4Y1P9

Ttel: (416) 964-6909 TLX: 065-24099

UNIX is a TYademark of AT&T laboratories
UX-Basic is a TYademark of UX Software, Inc.

Available from major computer manufacturers such as Altos. AT&T.

Siemens and an international network of distributors.

See us at Booth #246 at UNIX Expo in New York City. Las Vegas^onvenllon Center-West Hall
Las Vegas, Nevada

See us at

0CMDi»/Pall'85

Circle No. 226 on Inquiry Card

