

Modular.
Integrated.

Now.

Handle Writer/Spell™
Word processing with integrated

spelling correction and verification.

Handle Calc™
Spreadsheet with up to 32,000
rows and columns. Conditional

and iterative recalculation.

The Handle Office-Automation Series is a powerful set of modular,
integrated software tools developed for today's multiuser office
environment. Handle application modules can be used stand-alone
or combined into a fully integrated system.

The Handle Office-Automation Series modules offer:

• Ease of Use and Learning
• Insulation from UNIX
• Data Sharing Between Multiple Users
• Data Integration Between Modules
• Data Sharing with Other Software Products
• Sophisticated Document Security System

Handle Technologies, Inc.

Corporal© Office
6300 Richmond

3rd Floor
Houston, TX 77057

(713)266-1415

Sales and Product Information
850 North Lake Tahoe Blvd.

P.O. Box 1913
Tahoe City, CA 95730

(916) 583-7283

TM-HANDLE HANDLE HOST. HANDLE WRITER. HANDLE SPELL HANDLE WRITER/SPELL and HANDLE CALC ARE TRADEMARKS OF HANDLE TECHNOLOGIES. INC.

TM—UNIX IS A TRADEMARK OF AT&T BELL LABORATORIES.

Circle No. 255 on Inquiry Card

flow to go
from

UNIX to DOS
without

compromising
your

standards.
It’s easy. Just get an industry standard file

access met,hoc that works on both.
C-ISAM™ mom RDS.
It’s been the UNIX™ standard for years

(used in more |UNIX languages and programs
than any othe:
becoming the

Why?
Because o:

indexing struc ture offers unlimited indexes.

There’s also ai
locking and o
trails. Plus incl
space and cut

€> 1985, Relational iXitalw.'Je
INFORMIX is a registered
Relational Database Syste

access method), and it’s fast
itandard for DOS.

the way it works. Its B+ Tree

How can we be so sure C-ISAM works
so well? We use it ourselves. It’s a part
of INFORMIX: INFORMIX-SQL and File-iti:
our best selling database management
programs.

For an information packet, call (415)
322-4100. Or write RDS, 4100 Bohannon Drive,
Menlo Park, CA 94025.

You’ll see why anything less than C-ISAM
is just a compromise.

tomatic or manual record
dtional transaction audit
ex compression to save disk
access times.

_ _ Systems, Inc. UNIX is a trademark of AT&T
t nademark and RDS, C ISAM and File- It! are trademarks of

Inc.

RELATIONAL DATABASE SYSTEMS, INC.

Circle No. 269 on Inquiry Card

How we
as part of the program, you can ask more of
your database. Using the emerging industry-

. ^ standard query language.

improved Structured
|l i/^vy»r j T O rfl 10 rfA comes with the most complete
'LLvuiy I jell IIm i (jifiSO. set of application building tools.
J ^ ^ Including a full report writer

Actually, we didn’t change a thing. and screen generator. Plus a family of com-
We just combined it with the best panion products that all work together,

relational database management system. Like our embedded SQLs for C and
Introducing INFORMIX*-SQL.
It runs on either MS™-DOS or UNIX™

COBOL. So you can easily link your pro¬
grams with ours. File-it!™ our easy-to-use

operating systems. And now with IBM’s SQL file manager. And C-ISAM™ the de facto

INFORMIX is a registered trademark and RDS, C-ISAM and File-it! are trademarks of Relational Database Systems, Inc. IBM. UNIX and MS are trademarks of International Business Machines Corporation,

AT&T and Microsoft, rested vely. © 1985, Relational Database Systems, Inc.

standard ISAM for the
system. It’s built into
you can buy it separa

And when you
in the company of sonji
panies. Computer m.
AT&T, Northern Teletji
60 others. And major
Anheuser Busch and
Bank of Chicago.

Which makes
offers a family of prodjr
together. As well as w
standards.

UNIX operating
all our products, but

ely.
ose RDS, you’ll be
e other good com-

aifiufacturers including
om, Altos and over

Corporations like
he First National

; sense, . After all, only RDS
cts that work so well
th so many industry

So call us for a demo, a manual and a
copy of our Independent Software Vendor
Catalog. Software vendors be sure to ask
about our new “Hooks” software integration
program. Our number: 415/322-4100.

Or write RDS, 4100 Bohannon Drive,
Menlo Park, CA 94025.

And well show you how we took a good
idea and made it better.

RELATIONAL DATABASE SYSTEMS, INC.

UNIX REVIEW
THE PUBLICATION FOR THE UNIX COMMUNITY

Volume 3,

Number 11

November 1985

DEPARTMENTS: FEATURES:

6 Viewpoint 24 THE FINAL FRONTIER

8 The Monthly Report

By David Chandler

16 The Human Factor

By Richard Morin

68 C Advisor

By Bill Freiboth and Bill Tuthill

74 Industry Insider

By Mark G. Sobell

78 Rules of the Game

By Glenn Groenewold

84 Fit to Print

By August Mohr

90 Devil's Advocate

By Stan Kelly-Bootle

92 The UNIX Glossary

By Steve Rosenthal

96 Recent Releases

104 Calendar

By Joseph S. Sventek

Most major segments of the
computational fraternity have
received UNIX happily—save the
scientific community.

28 A RUN THROUGH THE MILL

By Robert Goff

Does UNIX have what it takes to
handle data analysis? There's no
substitute for actual experience.

106 The Last Word

108 Advertisers' Index

Cover art by Heda Majlessi

4 wviiir MnHNl

Rt i
UNIX REVIEW (ISSN-0742-3|
Second class postage paid at
Francisco, CA 94105. Entire c
UNIX REVIEW.
Subscriptions to UNIX REVIEW
USS85 in all other countries/ai
of address) should be sent to 5<
South 3rd Street, Renton, WA
Letters to UNIX REVIEW or its
writer's full name, address
necessarily those of UNIX REX
UNIX is a trademark of AT&T

■00

;:6) is published monthly by REVIEW Publications Co. It is a publication dedicated exclusively to the needs of the UNIX community,
nton, WA 98055 and at additional mailing offices. POSTMASTER: Please send Form 3579 to UNIX REVIEW, 500 Howard Street, San
items copyright 1985. All rights reserved and nothing may be reproduced in whole or in part without prior written permission from

are available at the following annual rates (12 issues): USS28 in the US; US$35 in Canada; US$48 in all other countries/surface mail;
mail. Correspondence regarding editorial (press releases, product announcements) and circulation (subscriptions, fulfillment, change

Howard Street, San Francisco, CA 94105. Telephone 415/397-1881. Correspondence regarding dealer sales should be sent to 901
98055. Telephone 206/271-9605.
editors become the property of the magazine and are assumed intended for publication and may so be used. They should include the

I home telephone number. Letters may be edited for the purpose of clarity or space. Opinions expressed by the authors are not
IEW.

Bell Laboratories, Inc. UNIX REVIEW is not affiliated with AT&T Bell Laboratories.

UNIX REVIEW NOVEMBER 1985 5

SCIENTIFIC APPLICATIONS

46 DATA ANALYSIS THROUGH
INTERACTION
By Richard A. Becker and John M.
Chambers

The desic ners of the S system for data
analysis discuss how human factors
and UNIX influenced their work.

36 INTERVIEW WITH STEVE
WALLACH
By Rob Warnock

A Crayette pioneer tells why UNIX is
becominc a pervasive presence on the
supercorrputer front.

UNIX IN REALTIME
By Clement T. Cole and John Sundman

Some may scoff, but UNIX does meet
the test—and the performance cost is
surprisingly small.

PUBLISHER:

Pamela J. McKee

ASSOCIATE PUBLISHERS:
Ken Roberts, Scott Robin

EDITORIAL DIRECTOR:

Stephen J. Schneiderman
EDITOR:

Mark Compton

ASSOCIATE EDITOR:

David Chandler

EDITORIAL ADVISOR:

Dr. Stephen R. Bourne, Consulting Software
Engineer, Digital Equipment Corporation

EDITORIAL REVIEW BOARD:

Dr. Greg Chesson, Chief Scientist, Silicon Graphics,
Inc.

Larry Crume, President/Managing Director, AT&T
UNIX Pacific Co.. Ltd.

Ted Dolotta, Senior Vice President of Technology.
Interactive Systems Corporation

Ian Johnstone, Project Manager, Operating
Software, Sequent Computer Systems

Bob Marsh. Chairman, Plexus Computers
John Mashey, Manager, Operating Systems,

MIPS Computer Systems
Robert Mitze, Department Head, UNIX Computing

System Development, AT&T Bell Labs
Deborah Scherrer, Computer Scientist. Mt. Xinu
Jeff Schriebman, President, UniSoft Systems
Rob Warnock, Consultant
Otis Wilson, Manager, Software Sales and

Marketing, AT&T Information Systems

HARDWARE REVIEW BOARD:

Gene Dronek, Director of Software, Aim
Technology

Doug Merritt, Consultant
Richard Morin, Consultant, Canta Forda Computer

Laboratory
Mark G. Sobell, Consultant

SOFTWARE REVIEW BOARD:

Eric Allman. Principal Systems Engineer,
Britton Lee, Inc.

Ken Arnold, Consultant. UC Berkeley
Jordan Mattson, Programmer, UC Santa Cruz
Dr. Kirk McKusick, Research Computer Scientist, UC

Berkeley
Doug Merritt, Consultant
Mark G. Sobell, Consultant

CONTRIBUTING EDITOR:

Ned Peirce, Systems Analyst, AT&T Information
Systems

PRODUCTION DIRECTOR:

Nancy Jorgensen

PRODUCTION STAFF:

Cynthia Grant, Tamara V. Heimarck, Florence
O'Brien, Denise Wertzler

BUSINESS MANAGER:

Ron King

CIRCULATION DIRECTOR:

Wini D Ragus

CIRCULATION MANAGER:

Jerry M. Okabe

MARKETING MANAGER:

Donald A. Pazour

OFFICE MANAGER:

Tracey J McKee
TRAFFIC:

Tom Burrill, Dan McKee, Corey Nelson

NATIONAL SALES OFFICES:

500 Howard St
San Francisco. CA 94105
(415) 397-1881

Regional Sales Manager
Colleen M Y. Rodgers
Sales/Marketing Assistant.
Anmarie Achacoso

370 Lexington Ave
New York, NY 10017
(212) 683-9294

Regional Sales Manager.
Katie A. McGoldrick

BPA membership applied for in March, 1985.

VIEWPOINT
The life cycle

It has been observed that since
UNIX now has a fair amount of
market momentum, it must be
well past its prime technically.
Common wisdom, after all, holds
that public acceptance and heavy
press coverage are the surest
signs of obsolescence.

Given this perspective, howev¬
er, it’s difficult to assess the role
UNIX might have in the scientific
community. Scientists certainly
would not be quick to say that the
system’s best years are behind it.
They know that if UNIX is to
make a significant contribution
in their field, it will need to
achieve a much greater penetra¬
tion than it currently enjoys.

This, of course, has given rise
to the question: is UNIX, in fact,
suitable? The logic in this is good,
but the question is bad. For the
last 15 years, UNIX has won
hearts and minds in almost every
other realm by virtue of its porta¬
bility and flexibility. Only the
most facile mind can imagine the
array of esoteric UNIX adapta¬
tions already in use. The system
has survived as long as it has
largely because of its ready accep¬
tance of change.

So we return to the question:
can UNIX be adapted for scientific
use? Yes, of course—but prob¬
ably not without a price. The
questions that demand answers
are: what cost-effective adapta¬
tions might be made and how
might UNIX offer solutions that
are better than those already
available to scientists?

This last question is especially
intriguing since it takes inertia
into account. Scientists, like peo¬
ple in other professions, have a
vested interest in the status quo.
Apart from explorers with mas¬
ochistic tendencies, most people
shun the pain of transition un¬
less they can be assured that
the grass is definitely greener
on the other side—substantially
greener, in fact.

UNIX has yet to demonstrate to
scientists that its solutions are
that much better than the ones
offered by VMS. Indeed, some in
the scientific community ques¬
tion whether UNIX is better at all.
At the root of this doubt lies the
Fortran question—a matter that
Lawrence Berkeley Lab’s Joe
Sventek wrestles with in the lead
article of this issue.

Bob Goff follows with an ac¬
count detailing some of the data
analysis strengths brought to
bear by UNIX. As a researcher
who has spent much of his life
manipulating seismic data, Goff
speaks from experience.

The tools offered by UNIX are
yet another lure deserving atten¬
tion. One tool in particular, the S
system, was specifically designed
for data analysis. Rick Becker
and John Chambers, the gentle¬
men responsible for the system’s
development, describe it and dis¬
cuss how UNIX influenced this
design.

The issue then forges into a
bugaboo topic—real time. Some
critics say UNIX can’t handle
real-time applications effectively.
Clem Cole of MASSCOMP disa¬
grees, and he offers seven good
reasons why.

The theme closes with an in¬
terview of Steve Wallach, the
man who helped generate the
“Crayette” wave with his design
of the Convex C-l. If Wallach’s
name sounds especially familiar,
it’s probably because you’ve read
about him in The Soul of a New
Machine. The questions he ad¬
dresses come from Rob Warnock,
himself a systems architect.

If all this seems to suggest that
adventures still lie ahead for
UNIX, so be it. In the scientific
realm at least, UNIX still has
many frontiers left to cross.

(jtr

6 UNIX REVIEW NOVEMBER 1985

The First Name In
Integrated Office

Automation Software

Executive Mail
Telephone
Directory

Menu Processor
Word Processor
Forms/Data Base
Spreadsheet

Certifie
Delivers

d and

ble Since 1981

XED was the first independent software
company to introduce a Unix WP package
and achieved early success by selling to
the government and international market
(XED is the only Unix WP package to meet
government specifications). Worldwide
sales of XED rank Computer Methods first
in both sales and units installed in 1984.

® INTEGRATED OFFICE SOFTWARE

Box 3938 • Chatsworth, CA 91313 U.S.A. • (818) 884-2000
FAX (818) 884-3870 • Inti. TLX 292 662 XED UR

XED is a registered tradem

UNIX is a trademark of AT

ark of CCL Datentechnik AG

& T Bell Laboratories, Inc. Circle No. 264 on Inquiry Card

THE MONTHLY
REPORT
No simple answers

by David Chandler

Two friends were chatting one
day. One, a casual fellow with a
penchant for keeping things sim¬
ple, was commenting on the oth¬
er’s verbosity. “Richard”, he
said, “you’re always launching
into some diatribe when all I want
is a simple response. Can’t you
ever give me a straight answer?”
To this the friend replied, “Well,
yes and no. Let me explain. ...”

As mentioned in last month’s
Report, AT&T and Sun Microsys¬
tems, Inc., announced in Septem¬
ber a major technology-sharing
agreement whereby technical re¬
presentatives from both compan¬
ies will work together “to facili¬
tate convergence” of System V
and the 4.2BSD-based Sun OS. At
first glance, the agreement seems
to hold great potential for contrib¬
uting to the evolution of UNIX as a
computer industry standard. Fur¬
ther study, however, reveals that
there are certain portions of the
announcement which are quite
significant, and certain others
which are less so. While working
to avoid verbosity, an explanation
is in order.

There was commotion in the
UNIX community when the an¬
nouncement was first made—
and for good reason. Perhaps the
greatest excitement was felt by
those who wish for UNIX to
become the official standard that
many say it already is unofficial¬
ly. Industry watchers thus were

stirred when UNIX giants AT&T
and Sun signed an agreement.
Add to this the opening line of the
fact sheet Sun distributed along
with its press release: “Sun and
AT&T have agreed to work togeth¬
er to converge the two major UNIX
standards into a single version.”
Further fanning of the flames
came from the industry press, as
evidenced by the front page story
in Computerworld that cried out,
“AT&T, Sun to Redo UNIX”. Such
stories may not be as racy as
amendments to the Ten Com¬
mandments, but they do raise
eyebrows.

The facts as presented in the
announcement of the agreement
are these: Sun and AT&T will
incorporate a “reasonable super¬
set” of both System V and Sun OS
into a single, AT&T-endorsed, en¬
hanced version of System V. The
resulting package will be avail¬

able from both companies—Sun
will offer an implementation of
the common interface on Sun
workstations (by summer 1986),
and AT&T will license it in a
future enhanced version of Sys¬
tem V. (Estimates from Sun hold
that the process at AT&T may
take as long as two years.) The
new system will continue to run
the existing base of System V
applications and will provide the
networking services that pre¬
viously have been available only
in 4.2BSD systems. (All of this, of
course, supports Bruce Borden’s
thesis that, “The way a standard
develops is from the implementa¬
tion backward as opposed to the
definition forward.” Borden, the
manager of engineering at Silicon
Graphics, Inc., should know—
he’s been in the UNIX game since
the Edition 4 days.)

Presenting this information,
however, raises more questions
than it answers. What will the
Sun-AT&T convergence include?
What will it exclude? Which com¬
pany will contribute what? AT&T
and Sun are known for having
different views on networking
—what does this agreement say
about that?

The first two questions—what
will and won’t be included in the
system—are loaded ones, and
company sources decline to be
specific in responding. This indi¬
cates either that they are (under-

8 UNIX REVIEW NOVEMBER 1985

T A N G O™

Use Tango to: Buy Tango for: COSI

• Connect IBM and • Execution of DOS 313 N. First St,

compatible PC’s running programs on the PC Ann Arbor, Michigan

DOS to UNIX systems. under UNIX control. 48103
(313) 665-8778

• Offload processing to ® Simple elegant tile Telex: 466568
PC’s. transfer under error

correcting protocol. Tango is a trademark of COSI.
• Control data and UNIX is a trademark of Bell

applications on remote • DEC, IBM, and laboratories.

PC’s. Tektronix (graphics)
terminal emulation.

• Distribute processing
between UNIX and PC’s. Tango utilizes a standard

RS-232 serial port on
the PC and connects to
the UNIX computer via
a modem or direct
connection.

The t>C-to-UNIX“Connection

Circle No. 267 on Inquiry Card

The
Truth
of the
Matter

is...
Prevail is a UNIX-based office
automation and application
development solution which
can be shipped to you today.
If you are looking for office
automation software or need
a fourth-generation language,
look to Prevail—an A.T.&T.
co-labeled product.

Prevail has seven components
which will meet your needs.

• Word Processing
• Spreadsheet
• Database Management

System
• Window Manager and User

Interface
• Report Writer
• Applications Development

Language
• Telecommunications

Prevail is available on AT&T
3B series, AT&T Unix PC
Model 7300, NCR Tower, DEC
VAX and MicroVax II series,
Sun Microsystems computers,
and Masscomp computers,

Inspiration Systems. Inc.
400 Cummings Park. Suite 4300
Woburn. MA 01801
017 y38-IIOO

See Prevail on the IBM PC Booth No. 5124

Yall'SS
November 20*24, 1985

Las Vegas Convention Center
Las Vegas, Nevada

Circle No. 297 on Inquiry Card

10 UNIX REVIEW NOVEMBER 1985

U THE MONTHLY REPORT

standably) protective of particu¬
lar innovations to be announced
later, or that such matters have
yet to be decided, or both.

According to Laurence Brown,
supervisor of UNIX Networking
Systems Engineering at AT&T
Bell Labs, “All that’s been agreed
to so far is that we will work
together to ensure that there is a
single UNIX standard that will
both support current System V
applications and will provide the
networking services that tradi¬
tionally have been offered on
Berkeley-based systems.” Now,
System V, of course, already
“supports current System V ap¬
plications”. Does this mean that
the agreement essentially re¬
quires nothing more than the
grafting of BSD networking facili¬
ties onto System V? Indications
suggest that the process is some¬
what more involved.

For its part, Sun’s first step
will be to add complete compati¬
bility with AT&T’s System V
Interface Definition (SVID) to the
Sun OS. While it is significant
that another major UNIX vendor
is making this move, it’s not now
considered news. Bill Joy, vice
president for research and devel¬
opment at Sun, stated at the
UniForum conference in Dallas
last January that Sun would
commit to SVID. Sun will port its
Network File System (NFS) to
System V, maintain 4.2BSD fea¬
tures and Sun enhancements,
and incorporate 4.3 enhance¬
ments next Spring, but it’s con¬
ceivable that Sun might have
done these things even without
the agreement with AT&T.

The new package is not to be a
“dual” or “layered” port. In the
Sun System V facility, system
calls and other facilities required
for System V are implemented as
“native” extensions to the Sun
OS kernel. A separate library is
used for commands and utilities
unique to System V.

Perhaps even more interesting
than Sun’s actions is the question
of what AT&T will do. Since the
focus of the agreement, as Brown
stated, is on support for System V
applications and the availability
of networking services, and since
AT&T is already very much en¬
gaged in the business of support¬
ing System V, a major AT&T
emphasis no doubt will be placed
on networking. Brown observes:
“The root of this agreement is
that both companies feel applica¬
tions are important—important
to maintain compatibility for ex¬
isting applications as our individ¬
ual systems evolve; and that there
is important new functionality
coming in networking, and that
it’s important to define UNIX
standards there. AT&T and Sun
will work on those together as
part of this agreement. ... We saw
networking as an area of poten¬
tial divergence, and we’d like to
bring everybody together there.”

The fact that networking is a
key issue in the agreement is
public knowledge. What is not yet
public are the specific facilities
the companies will use in their
joint networking scheme. “Now,
the exact technology that’s used
to provide those additional [net¬
working] services still needs to be
worked out”, Brown said, “and
that isn’t covered by the press
release. ... We need to agree on a
common set of networking ser¬
vices that will be provided on all
standard UNIX systems, and then
any vendor, [in providing] upward
compatibility for its customers,
may extend beyond that and offer
additional features on its sys¬
tems.”

This last remark leads to con¬
siderations of how AT&T’s funda¬
mental document, the SVID, may
be altered by the Sun-AT&T
agreement. Writing in the Febru¬
ary, 1985, issue of UNIX REVIEW,
Doug Kevorkian, supervisor of
UNIX System Architecture and

Good To Be True?

Apollo 660

VAX 780FPA

Celerity 0200

Pyramid FPA90X

RiUge 32/330

WHETSTONEl
Single Precision

Pyramid FPA90X

Apollo 660

VAX 780FPA

Ridge 32/330
Celerity 0200

Benchmark

Call Us On It.
UNPACK Benchmark

Double Precision

Million WHETSTONES Per Second Million Floating Point Operations Per Second

The C1200 computational system
continues to set new performance
standards. Results from industry-
accepted benchmark s highlight
the ClZOO’s performance when
executing workloads characteristic
of compute-intensive engineering
and scientific applications. Similar
performance results are achieved
in a broad range of application
environments: mode ling, simulation,
analysis, image proc issing.

The C1200 combii
performance and feu
unmatched local coi
you the best price/p
value available todav

nes mainframe
tures with

i itrol to provide
n Tformance

Optimized native UNIX
4.2BSD
32-bit RISC-like architecture
Up to 24 MBytes physical
memory
4 Gigabytes virtual memory
Multiple high speed buses
Industry-standard graphics,
compilers, networking and
communications options
Up to 32 users

The proof of performance is in
the execution of your application.
We promise performance.

We deliver performance.

So Call Us On It.

CELERITY COMPUTING

Corporate Headquarters: 9692 Via Excelencia, San Diego, CA 92126 (619) 271-9940
Circle No. 266 on Inquiry Card

UNIX is a registered Tradem; rk of AT&T Bell Laboratories. VAX is a registered Trademark of Digital Equipment Corporation.

CEEGEN-GKS
GRAPHICS

SOFTWARE in C
for UNIX

□ Full implementation of
Level 2B GKS.

□ Outputs, Inputs, Segments,
Metafile.

□ Full Simulation for Linetypes,
Linewidths, Fill Areas,
Hatching.

□ Circles and Arcs, Ellipses
and Elliptic Arcs, Bezier
Curves.

□ Ports Available on all
Versions of UNIX.

□ CEEGEN-GKS is Ported to
Gould, Masscomp, Plexus,
Honeywell, Cadmus,
Heurikon, Codata, NBI,
NEC APCIII, IBM-AT, Silicon
Graphics, Pyramid, Tadpole
Technology, Apollo, AT&T
3B2, AT&T 6300, DEC VAX
11/750,11/780 (4.2, 5.2),
NCR Tower.

□ CEEGEN-GMS GRAPHIC
MODELING SYSTEM, An
Interactive Object-
Oriented Modeling Product
for Developers of GKS
Applications. CEEGEN-GMS
and GKS Provide the
Richest Development
Environment Available on
UNIX Systems.

□ Extensive List of Peripheral
Device Drivers Including
Tektronix 4010, 4014, 4105,
4109, HPGL Plotters,
Houston Instruments,
Digitizers, Dot Matrix
Printers and Graphics CRT
Controllers.

□ END USER, OEM,
DISTRIBUTOR DISCOUNTS
AVAILABLE.

CEEGEN CORPORATION
20 S. Santa Cruz Avenue, Suite 102
Los Gatos, CA 95030
(408) 354-8841
TLX 287561 mlbx ur

EAST COAST:
John Redding & Associates
(617) 263-8206
UNITED KINGDOM:
Tadpole Technology PLC
044 (0223) 861112
UNIX is a trademark of Bell Labs.
CEEGEN-GKS is a trademark of
Ceegen Corp.

Circle No. 298 on Inquiry Card

U THE MONTHLY REPORT

Operating System Engineering at
AT&T Bell Labs, stated, “In defin¬
ing the relationship between Sys¬
tem V and application programs,
the SVID describes a minimum
set of system calls and library
routines that should be common
to all operating systems based on
System V. The remaining com¬
mands and utilities have been
grouped into a logical series of
optional extensions to the base
definition.”

The intent of the Sun-AT&T
agreement is to incorporate BSD-
derivative networking features
into the SVID. Does this then
mean that AT&T will adopt Sun’s
NFS? Sun’s Bill Joy responded,
“What has been announced so
far is that [Sun] will supply an
NFS for System V, and that NFS
will be supportable under the
AT&T networking scheme; in oth¬
er words, whatever scheme AT&T
has for supporting distributed file
systems will support NFS. There
hasn’t been any announcement
[yet] as to what AT&T’s network¬
ing options for its customers will
be.” That is, Sun may or may not
be sure how, but, as Joy added,
“Half the code in our system is
networking, so that has to get
worked into the common frame¬
work somehow.”

In seeking to determine what
points are significant in the an¬
nouncement of this agreement,
representatives from all sides fo¬
cus on the pivotal role of the
SVID. This will determine how
UNIX appears to the end user and
the application; the technical ma¬
nipulations that go on behind the
interface are of secondary impor¬
tance when one speaks of stan¬
dards. Bernard Lacroute, execu¬
tive vice president and general
manager of Sun’s workstation
division, emphasized this point:
“Of first and foremost impor¬
tance is that, at the application
level, a System V application or a
4.2 application can run without

knowing whether or not it’s Sys¬
tem V or 4.2.”

What of significance then
comes from the announcement of
the Sun-AT&T agreement? First,
Sun will support the SVID. Sec¬
ond, System V will continue to
support current System V appli¬
cations, while being modified to
provide BSD-derived networking
services, the specifics of which
will be announced later as the
Sun-AT&T relationship matures.
The news, then, is not that “The
Standard Is Here”, but rather
that ‘ ‘another step in the continu¬
ing evolution of the standard is
here”.

There is a third point of sub¬
stance, or perhaps it should be
said, “potential substance”. A
popular computer industry per¬
ception holds that UNIX cannot
be a standard because so many
versions of it exist. AT&T, how¬
ever, has a different perspec¬
tive—one that claims the SVID is
the standard UNIX base from
which other vendors can add
features. These features may give
each version a different flavor,
but the UNIX system at the base
will remain standard. If this Sun-
AT&T agreement contributes to
the industry’s adoption of AT&T’s
perspective, it will be substantive
for that alone. “That is certainly
our intention”, said Bob Mitze,
the department head of UNIX
Computer System Development
at AT&T Bell Labs. “That is our
expectation—that. . .people will
find that by writing to the SVID
they can write portable programs
that will move from machine to
machine. We expect we will be
able to solidify the standard to the
point where we won’t find our¬
selves with [the] perception [that
the various UNIX versions are too
disparate to be one standard].
Most programs turn out to be
fairly easy to port. . . But the
perception is nonetheless quite
important, because that has a lot

12 UNIX REVIEW NOVEMBER 1985

CREATE
LASTING IMPRESSIONS

HIEROGLYPH
UNIVERSAL REPORT PRODUCTION SYSTEM"

INTEGRATED TEXT/DATA/ADVANCED GRAPHICS SOFTWARE
A "report" is information presented in organized form- stroke commands. Both text and commands can be in
typically a printed document. If you are a professional English or several foreign languages. The user manual is
whose work involves preparing reports HIEROGLYPH' is written for three levels: New, Experienced and Expert,
for you. HIEROGLYPH is designed to meet the needs of Regardless, you can be doing productive work the first
technical and office report preparation and produc- day. HIEROGLYPH software incorporates Text
lion where the combination of text, data and .gggpg^.. processing, Document Aids, Document Filing,
advanced graphics are essential elements. Graphics, Data Handling and Production Tools.
Whether you are an engineer, scientist architect, ,f@^v Together they comprise the most produc tive
manager of business reports, a writer or graphic system for creating and producing superior re-
artist, HIEROGLYPH integrates all information in ports-documents that make lasting impressions,
your UNIX Universe. HIEROGLYPH combines
all the elements necessary to generate the final HIEROGLYPH is the produc t of Prescience,
composition. You have the option of camera- DD__ Inc. (pronounced pres-ce-ence) 820 Bay
ready copy or multiple copies in Color or Black r K EbC 11 N(_ t Avenue, Suite TOO, Capitola, California 95010
and White. HIEROGLYPH uses simple, single- (408) 462-6567.

NEW CORPORATE HEADQUARTERS
1(25 SOUTH GRANT STREET • SUITE 510 • SAN MATEO, CA 94402 • (415)573-1507

Circle No. 262 on Inquiry Card

U THE MONTHLY REPORT

to do with how many people are
going to write software. . . . The
market frequently seems to be
based on perception.”

ENCORE TAKES A BOW

A much-anticipated official an¬

nouncement from Encore Com¬
puter Corp. has finally come to
pass. Three new product lines
and a version of UNIX are avail¬
able as of this month: a family
of general-purpose superminis;
three models of interactive work¬

stations; two models of a network
communication computer (the
“Annex”); and UMAX, yet an¬
other UNIX flavor.

The Multimax is designed to
permit up to 20 main processors
to share a common memory. Con¬
figurations cover a broad range of
capabilities; performance that
spans 1.5 to 15 MIPS; memory
capacity ranging from 4 to 32 MB;
and systems containing from one
to 10 I/O channels. System prices
begin at $112,000 for a dual
processor (1.5 MIPS) system with
4 MB of shared memory, one I/O
channel, one 515 MB disk drive,
one 6250 bpi half-inch tape drive,
and a workstation display or
console printer. A large system
with the same peripherals confi¬
gured for parallel processing ap¬
plications, with 20 processors (15
MIPS) and 32 MB of memory, is
priced at $340,000. The Multi¬
max superminis are aimed at the
general-purpose computer mar¬
ket, and so compete with DEC
VAXen and the Data General and
Prime machines in this range.

Although the two low-end mod¬
els in Encore’s HostStation line
of workstations—the 100 and
110—are single-processor ma¬
chines, they are upgradable to the
top-of-the-line 550, a desktop box
with two 32-bit processors and a
base package including high reso¬
lution (1056 by 864) 19-inch
monochrome display, 1 MB of
memory, 41 MB of internal hard
disk storage (expandable to over
370 MB), three RS-232 ports; and
a 814,000 price tag.

The Multimax family runs un¬
der UMAX 4.2, Encore’s version
of UNIX offering the full function¬
ality of 4.2BSD. UMAX also offers
parallel and distributed process¬
ing extensions, using thousands
of hardware and software locks to
protect individual elements with¬
in system tables. The system
features “multithreading”, a de¬
sign providing simultaneous ac-

“Now we can build multi-user
applications with a relational
database—without the time

and expense of programming.

THAT'S
PROGRESS!"

Steve Stone. S.B. Stone & Company, Cleveland. OH

“We have been a major supplier of custom applications in the
Cleveland market for seven years. We switched to PROGRESS™ cut
development times in half and are now delivering solutions to our users
at lower cost, faster and more easily!”

PROGRESS is the only product that lets you build applications com¬
pletely in a high-level fourth-generation environment. Its English language
syntax increases productivity 10 to 40 times over COBOL, BASIC, and C.
What’s more, PROGRESS is a relational database with crashproof recovery,
high-performance multi-user capability on large databases, and portability
across UNIXj" XENIX;* and MS-DOS™

If you want to save money and time on application development, call
Data Language Corporation at 617-663-5000 and ask about PROGRESS.

e
DATA LANGUAGE CORPORATION

47 Manning Road, Billerica, MA 01821 617-663-5000

PROGRESS is a trademark of Data Language Corporation, developers of advanced software technology for business and industry.

UNIX is a trademark of AT&T Bell Laboratories. MS-DOS and XENIX are trademarks of Microsoft Corporation.

14 UNIX REVIEW NOVEMBER 1985
Circle No. 289 on Inquiry Card

cess of system resou
tiple processors. (A
copy of UMAX res
Multimax shared me
facilitates multithre
processor version of
ates the HostStation
tithreading is accom
multiprocessing prim
on memory locks
access by multiple p
operating system resi

rces

UNIX EXPO:
BIG APPLE STAR

It appears Manha
twice taken by storm
ber. Hurricane Gloria
work the week of th|e
week after the seci
UNIX Operating Sys

for mul-
shared

ities in the
nory, which

. A uni-
l)JMAX oper-

550.) Mul-
plished by
itives based

provide
focessors to
ources.

si igle

ttan was
in Septem-

did her
23rd, one

annual
em Exposi-

ond

tion and Conference, and while
Gloria gratefully did not live up
to dire predictions, UNIX Expo
seems to have met its objectives
and then some.

Held this year at the New York
Hilton in Rockefeller Center,
UNIX Expo is a business-oriented
show, seeking not only to bring
UNIX people together, but to as¬
sist UNIX companies in contact¬
ing potential customers: small
companies, DP/MIS personnel in
larger companies, VARs—any
people or organizations consider¬
ing the purchase of UNIX sys¬
tems. Don Berey, account execu¬
tive of show sponsor National
Expositions Co., Inc., said those
who came saw what they were
hoping for: the event boasted 120
exhibitors and 10,460 attendees.

The various conferences (four
tracks covering UNIX and Office
Automation, UNIX in a Data Pro¬
cessing Environment, UNIX Busi¬
ness Solutions, and UNIX and
PCs) “played to standing-room-
only crowds”, and the tutorials,
designed and developed by AT&T
specifically for the show, each
operated with attendance “at or
near capacity”.

Berey also pointed out that a
large number of exhibitors have
already reserved space for next
year’s Expo, to be held again in
New York City, this time at the
new Jacob Javits Convention
Center, October 20-22.

David Chandler is the Associate
Editor of UNIX REVIEW. ■

UNIX UBACKUP
BACKUP, RESTORE, AND MEDIA MANAGEMENT

SYSTI USECURE

UTIL! TY SYSTEM SECURITY MANAGEMENT

SPR
PRINT SPOOLING AND BATCH JOB SCHEDULING SOFT!

-SOY
CAN
ONWI

WARE
OU
rET
1TH

SSL
FULL-SCREEN APPLICATION DEVELOPMENT

S-TELEX
TELEX COMMUNICATIONS MANAGEMENT

YOUR JOB. SSE
FULL-SCREEN TEXT EDITOR

For more inf c
call or write.
(703)734-98-

trmation,

\4

These products are available for most UNIX or UNIX-derivative operating
systems, including System V, 4.2 BSD. 4.1 BSD. Xenix, Version 7. System III.
Uniplus, and others.

UNIX is a trademark of AT&T Bell Laboratories.

UNITECH
SOFTWARE INC 8 3 3 0 O L D C O U R T H O U S E R D . SUITE 8 00 V 1 E N N A . V 1 R G 1 N 1 A 22180

Circle No. 300 on Inquiry Card

THE HUMAN
FACTOR
Of megaflops and multiprocessors

by Richard Morin

As noted in a previous column
(January, 1985), scientists tend
to have voracious appetites for
computing power. This, along
with their tolerance for new and
unusual ideas, makes them good
prospects for exploratory com¬
puter architectures. Consequent¬
ly, many firms with unusual
hardware designs select the sci¬
entific marketplace as their first
target. Unfortunately, this has
often consigned scientific users to
peculiar and even barbaric ex¬
cuses for operating systems. The
scientists, needing lots of mega¬
flops, haven’t been able to be
choosy.

A new day has dawned, howev¬
er, and UNIX is coming to the
rescue. Simply by being available,
adaptable, and competently de¬
signed, it has become the operat¬
ing system of choice for the
current breed of offbeat scientific
number crunchers. The fact that
it has a significant following of
users and vendors doesn’t hurt
either. Manufacturers are freed to
produce just number crunchers,
knowing that a wide range of
workstations and other support¬
ing components will be available
from other vendors. Consequent¬
ly, we see a host of vector proces¬
sors, multiprocessors, RISCs (re¬
duced instruction set computer),
and other machines showing up
at UNIX trade shows.

The fight isn’t over, of course,

and a number of non-UNIX ma¬
chines still are being developed.
Some of these come from old-line
manufacturers whose existing
operating systems are quite satis¬
factory, at least to their current
customers. Others, such as data¬
flow machines, reduction ma¬
chines, and inference engines,
are so peculiar as to make tradi¬
tional operating systems such as
UNIX entirely unsuitable. Still,
the facta large number of vendors
have chosen to base all or part of
their new ventures on UNIX is
suggestive of a strong trend.

Before beginning our survey, a
few words of warning may be in
order. First, different architec¬
tures are optimized for different
purposes, and a given machine
may be entirely unsuitable for a
given purpose, despite glowing
performance figures. A vector

machine that performs very well
on large array calculations may
be very poor at monte carlo analy¬
sis. Second, benchmark figures
are always somewhat suspect,
and published performance rat¬
ings are often chosen to favor a
vendor’s product. Thus, the fig¬
ures offered here are more indica¬
tive than definitive. Finally, if real
money is to be spent, a purchaser
is well advised to investigate the
track records of the models and
vendors in question. Buying a low
serial number product can occa¬
sionally be an all too interesting
experience.

THE HIGH END

It's lonely at the top. Only a few
companies are involved in the
supercomputer game, and their
customers—if few—are wealthy.
Addressing hundreds of mega¬
bytes of RAM, and performing
hundreds of millions of instruc¬
tions per second, these machines
are very powerful indeed. Some of
the traditional players are still
around, but a number of new
companies have also arrived on
the scene.

Cray Research (with headquar¬
ters in Mendota Heights, MN),
inspired by hardware guru Sey¬
mour Cray, is the premier Ameri¬
can producer of scientific su¬
percomputers. Cray’s 64-bit ma¬
chines, optimized for fast floating
point calculations and array ma-

16 UNIX REVIEW NOVEMBER 1985

Documentation and Software from
Customer Information Center

World Headquarters for AT&T Documentation

Description

3B2PC INTERF
PC 6300 PC INT

MFCOBOL LA
MF COBOL LE\

AT&T 3B Computer Manuals

<\CE GUIDE 999-801-020IS
ERFACE GUIDE 999-801-021 IS

HlGUAGE REFERENCE MANUAL 999-802-00315
EL II OPERATING GUIDE 999-802-004IS

RM/COBOL LA MGUAGE REFERENCE MANUAL 999-802-020IS
RM/COBOL USER’S GUIDE 999-802-021 IS
RM/COBOL RUNTIME GUIDE 999-802-022IS

dBASE II USER
dBASE II REFE

INGRESS
INGRESS
INGRESS
INGRESS
INGRESS
INGRESS
INGRESS
INGRESS
INGRESS

S GUIDE 999-803-000IS
3ENCE MANUAL 999-803-001 IS

SYS"'EM OVERVIEW 999-803-002IS
QUERY-BY-FORMS GUIDE 999-803-003IS
REPORT-BY-FORMS GUIDE 999-803-004IS
REFERENCE MANUAL 999-803-005IS
VISUAL FORMS EDITOR USER’S GD 999-803-006IS
REPORT WRITER REFERENCE MNL 999-803-007IS
EQUEL/C PROGRAMMER’S GUIDE 999-803-008IS
SELF-INSTRUCTION GUIDE 999-803-009IS
ADIV INISTRATOR’S GUIDE 999-803-010IS

INFORMIX MANUAL 999-803-015IS
FILE-IT! MANUAL 999-803-016IS
C-ISAM MANUAL 999-803-017IS

/ANUAL 999-804-000IS

.ATION GUIDE 999-806-024IS
INVENTORY MANUAL 999-806-025IS

MULTIPLAN IV

BACS INSTAL
BACS ORDER
BACS PAYROLL MANUAL 999-806-026IS
BACS ACCOUNTS PAYABLE MANUAL 999-806-027IS
BACS ACCOUNTS RECEIVABLE MANUAL 999-806-028IS
BACS GENERAL LEDGER MANUAL 999-806-029IS
BACS WORKSHEETS 999-806-030IS

; PAG INGRESS

BACS PACKA

REFERENCE
SERVICE
SYSTEM PRO

MANUAL
UAL

GRAMMER’S GUIDE

MAvJ SERVICE
USER’S MANU
PROGRAMM E

DRI CBASIC
DRI C
DRI PL/1
DRI PASCAL

Select Code

981-020
981- 021

982- 003
982-004

982-020
982-021
982- 022

983- 000
983-001

983-002
983-003
983-004
983-005
983-006
983-007
983-008
983-009
983-010

983-015
983-016
983- 017
984- 000

986-024
986-025
986-026
986-027
986-028
986-029
986-030

Special Package Price
KAGE OF 8 ITEMS (983-003 thru 983-010)

GE OF 5 ITEMS (986-025 thru 986-029)
999-900

999-901

AT&T PC 6300 Documentation
637-400
637-800
982-200

AT&T UNIX PC 7300 Documentation
UAL
AL
R’S GUIDE

962-030
981-312
981-313

Special While Quantities Last
AT&T PC6300 System/Programming Software

OMPILER

MTt

CATALOG
THE UNIX SYSTEM V SOFTWARE CATALOG (Fall 1984 Issue)

021-105
021-107
021-108
021-109

307-125

ORDER TOLL FREE

1 -800-432-6600
OPERATOR 363

Price

$24.00
$15.00

$35.00
$35.00

$40.00
$20.00
$10.00

$25.00
$25.00

$20.00
$20.00
$20.00
$20.00
$20.00
$20.00
$20.00
$20.00
$20.00

$45.00
$35.00
$35.00
$35.00

$10.00
$40.00
$40.00
$40.00
$40.00
$40.00

$5.00

$120.00
$180.00

$65.00
$150.00

$65.00

$150.00
$65.00
$65.00

ORIGINAL SPECIAL
PRICE PRICE

$600
$350
$750
$600

$299
$199
$389
$299

$19.95 $13.95

AT&T
The right choice.

■ AT&T’s Customer Information Center, Marketing Dept. 2855 N. Franklin Rd. Indianapolis, In. 46219■

Uthe human factor

nipulations, are the standard
of comparison for scientific num¬
ber crunchers. A Cray X-MP,
for example, can do about 250
megaflops (250,000,000 floating
operations per second), for a mere
$5 million. The Cray 2 is reputed
to be faster still. And, naturally,
Seymour is hard at work on the
Cray 3. But what about software?
COS, similar to CDC’s NOS, has
been Cray’s historical proprietary
operating system, but that pic¬
ture has changed. Cray Research
is using UNIX System V on the
Cray 2, and says that it will port
UNIX to the other models in the
near future.

Some Japanese firms (Fujitsu,
Hitachi, NEC) have produced very
respectable supercomputers. A

lack of software, among other
things, has kept these machines
from being distributed effectively
outside of Japan. This is in the
process of changing, however,
and UNIX is playing a large role.
All of these vendors have an¬
nounced computers that run
UNIX. In addition, the powerful
Japanese Ministry of Internation¬
al Trade and Industry (MITI) has
opted for UNIX as its primary
standard. It is thus only a matter
of time before UNIX-based super¬
computers begin to arrive from
Japan.

Denelcor (Aurora, CO) has not
yet produced a machine that can
take on a Cray, but it expects to do
so in the near future. Currently,
the firm produces only the HEP1

system, composed of up to eight
processors, each of which can do
16 MIPS. Previously plagued by a
lack of good support software,
Denelcor has recently announced
the introduction of a real-time,
parallel processing version of
UNIX for the HEP1. The HEP2,
now being prototyped, is expected
to be capable of 12K MIPS, put¬
ting it firmly in the supercom¬
puter league.

ETA Systems (St. Paul, MN), a
CDC spinoff, is scheduled to deliv¬
er its first ETA-10 UNIX-based,
vector multiprocessor in late
1986. Delivering performance in
the range of 10 gigaflops, the
system will be able to support
eight 64-bit vector processors,
each with up to 32 MB of memory.
In addition, the ETA-10 can have
up to 2 GB of shared memory.

Though commercial supercom¬
puters are generally not well
optimized for scientific tasks,
their powerful processing and I/O
capabilities can occasionally be
very useful. With the addition of
attached array processors such
as those made by Floating Point
Systems (Beaverton, OR), a tra¬
ditional commercial mainframe
such as an IBM 3084 can easily
qualify for scientific supercom¬
puter status. IBM’s interest in
UNIX has been tepid to date,
however, and its future directions
are quite unclear. Still, IBM has
(grudgingly) announced support
for UNIX on its mainframe com¬
puters. Amdahl (Sunnyvale, CA)
is also a name to be reckoned with
in the commercial supercomputer
field, and it has been a UNIX
advocate for some years now.

Finally, any number of super¬
computer designs are always
brewing in assorted laboratories
and universities. Many of these
will never be built, and most will
be of only academic interest. Still,
it is this ferment that has pro¬
duced many of today’s hot ma¬
chines, and it will no doubt

SEARCHING
FOR

STATISTICS

At last. TRANSTAT! A statistical package for
Unix-based systems, written in C TRANSTAT

gives you frequencies, cross-tabs, correlations, regres¬
sions, and more. Completely menu-driven with fully

labeled reports. TRANSTAT allows for total control of
data recoding, case selection, and missing data.

Call for more information on TRANSTAT and Unix hard¬
ware, software, consulting and training.

SPECIALISTS IN UNIX COMPUTING

1700 Shattuck Avenue Berkeley, California 94709 415 841 1800
Dealer inquires are welcomed

TRANSTAT is a registered trademark of BASIS Unix is a trademark of AT&T Bell Laboratories.

Circle No. 296 on Inquiry Card

18 UNIX REVIEW NOVEMBER 1985

YOU CHOOSE:
Terminal Emulation Mode

MLINK CU/UUCP

Menu-driven Interface Yes

Expert/brief Command Mode Yes Yes

Extensive Help Facility Yes

Directory-based Autodialing Yes

Automatic Logon Yes Yes
Programmable Function Keys Yes

Multiple Modem Support Yes Yes

File Transfer Mode
Error Checking Protocol Yes Yes

Wildcard File Transfers Yes Yes
File Transfer Lists Yes Yes

XMODEM Protocol Support Yes
Compatible with Non-Unix Systems Yes

Command Language

Conditional Instructions Yes
User Variables Yes
Labels Yes
Fast Interpreted Object Code Yes

Program Run Yes
Subroutines Yes
Arithmetic and String Instructions Yes
Debugger Yes

Miscellaneous

Electronic Mail Yes Yes
Unattended Scheduling Yes Yes
Expandable Interface Yes
CP/M, MS/DOS Versions Available Yes

MLINK
I 5 The choice

flexible teleio
to use. MUN
prehensive
unique script

MLINK

I3S0

easy. Our MLINK Data Communications System is the most powerful and
mmunications software you can buy for your Unix™system. And it’s easy

K comes complete with all of the features listed above, a clear and com-
275-page manual, and 21 applications scripts which show you how our

language satisfies the most demanding requirements.

Unix System V

Unix System III

Unix Version 7

BSD 4.2

Xenix

VM/CMS

MS-DOS

CP/M

and more...

Choose the best. Choose MLINK.

^ tos Data General IBM

Arrete DEC Onyx
AT&T Kaypro Plexus

Compaq Honeywell and more.

MLINK is a trademark
trademarks <>l Mir rosof

is ideal for VARs and application builders. Please call or write for information.

Corporate Microsystems, Inc. P.O. Box 277, Etna, nh 03750 (603) 448-5193

I Corporate Microsystems. Inc. Unix is a itademaik ol AIM Hell Labotaloties. IHM is a registered trademark of IBM Corp. MS-DOS and Xenix are
Corp. C'P/M is a registered trademark of Digital Research.

Circle No. 254 on Inquiry Card

1-lTHE HUMAN FACTOR

continue to be a fertile source of
new computer architectures. The
ACM SIGARCH newsletters and
conference proceedings contain
many interesting descriptions of
novel theoretical, experimental,
and even commercially produced
architectures. Electronics maga¬
zine is also a very good source for
information on new commercially
produced machines and interest¬
ing hardware trends.

CRAYETTES

It occasionally happens that
one's processing requirements
are not matched by a budget
allowing the purchase of a multi¬
million dollar number cruncher.
This could happen to anyone, but
fortunately there are several ven-

These are exciting

times for hardware

junkies, and UNIX

continues in its role as a

distributed laboratory

for computer science

research.

dors who are quite eager to help.
The machines they produce,
known as Crayettes, typically

cost less than a megabuck, but
provide as much as a quarter of
the power of a Cray. Many of these
machines are augmented by an
assortment of vectorizing compil¬
ers and other software aids.

Several Crayette producers are
making full vector processors.
Two such machines, aimed di¬
rectly at Cray owners, are pro¬
duced by American Super Com¬
puter and Scientific Computer
Systems. These companies have
chosen to maintain binary com¬
patibility with Cray 1 processors,
and are even porting Cray’s COS.
This strategy may be short-lived,
however, in light of Cray’s move
to UNIX. A number of other
vendors have decided to go with
UNIX, occasionally assisted by an
underlying parallel kernel.

Alliant Computer Systems (Ac¬
ton, MA) makes a multiprocessor
4.2BSD system that supports up
to 256 MB of real memory, 2 GB of
virtual memory, and a mixture of
computational and interactive
processors. At its full configu¬
ration of eight 32-bit vector pro¬
cessing computational elements,
the system can reach speeds of 94
megaflops and 35 MIPS. The
Alliant Fortran compiler auto¬
matically detects opportunities
for parallel execution, allow¬
ing the runtime environment to
perform entire DO loop bodies
on multiple processors. Special
hardware and software allow the
system to deal with dependencies
of one iteration on another.

Convex Computer Corp. (Rich¬
ardson, TX) produces the C-l 64-
bit pipelined vector processing
system, which runs an operating
system based on 4.2BSD. The C-1
is able to do 60 megaflops and
handle up to 128 MB of memory,
while maintaining VAX/VMS For¬
tran compatibility. An interesting
technique known as “disk strip¬
ing’’ is now being used by Convex.
With this technique, a set of disk
drives is treated as a single drive.

Great-looking TROFF output

from low-cost laser printer!
■ Now! Full support for LaserJet+B

For several years, Textware has been licensing TPLUSt software to process
the output of troff and ditroff for a wide variety of phototypesetters, laser
printers, etc. Now, with TPLUS driving the LaserJet*, we have again set a new
standard for price/pcrformance. By adding our Graphics Option, with DWBt, you
have the total solution to your document production requirements.

Many organizations are now getting maximum benefit from the HP LaserJet,
using our TPLUS/LJ software. The low-cost LaserJet is a remarkable value on
its own—8 page per minute output speed, 300 dot per inch resolution, and

typesetter-quality fonts. TPLUS gives you access to all
this and more from your own system. We support all the
characters and accents needed by troff and eqn; in
addition, special characters (©; logos too) can be sup¬
plied or generated to meet specific requirements. Our
precise handling of rules and boxes allows you to take
full advantage of tbl for forms, charts, etc.

While even LaserJet output is not in the same class as the best phototype, it is
certainly well suited to documentation and a broad range of other applications.
When you do have a need for phototypeset images, TPLUS and the LaserJet will
save you time and money. Preview mode lets you proof all aspects of your docu¬
ments conveniently, in-house, before sending out for phototypesetting (from our
UNI#TEXT service). Cross-device proofing is a standard feature of TPLUS.

The HP LaserJet printer is not only inexpensive—it is an exceptional value!
Want proof? This entire ad was set in position using TPLUS on the LaserJet!
t TPLUS is a trademark of Textware Inti. t Documenter’s Workbench is a trademark of AT&T

For further information, please write or call.
Also available for:

• AM 5810/5900 & 6400, APS 5 & ^5,
CG 8400 & 8600, Mergenthaler 202

• Xerox 4045, 2700/3700 & 8700/9700
• BBN, Sun, 5620 & ‘PC’ CRTs
• Diablo, Qume & NEC LQPs
• C Itoh & Epson dot-matrix

Circle No. 293 on Inquiry Card

HI TEXTWARE
M] INTERNATIONAL

POBoxM Harvard Square Telephone:
Cambridge, MA 02238 (617) UNI-TEXT

EQN examples

lim (tan *),in 21 = 1
X —*7f/2

a+fi n eSk‘k/k
k> 1 sin(x)

20 UNIX REVIEW NOVEMBER 1985

ontie to TERM with your
enix communications

problems.

TERM - More Powerful. Easier To Use.

Compare Ihese Special Features: »
1

s Easy to i
^ Online u:
s Menu dri
s Fast - 96
^ Self instc
^ Powerful
^ Wildcard
^ Automatic
^ Xon/Xoff,

cols for i

systems

smember mnemonic commands ^ Xmodem protocol for remote bulletin boards
5 er’s manual for instant help Full/half duplex emulation modes
/en interface ^ Automatic login and logout

iDO baud file transfers ^ Auto-dial, auto-redial, answer and hangup
lling modem support
scripting language with variables ^ Unlimited phone number directory for auto¬
file send/receive capability dialing
error-checking and re-transmission ^ Unattended file transfers

Etx/Ack, Line and character proto- ^ Remote maintenance capability
communications with non-TERM s Sample scripts included

MS-DOS and CP/M versions available

TERM - Powerful Communications.

TERM - Unix'Xenix’s most powerful communications
program. TERM Communications Software provides a
full-featured, programmable communications tool under
the Unix/Xeni> environment.

You’ll appreciate
wide user base,
TERM is both
It has extras yoi
programs: On-
error-checking
binary data.

TERM’s ease of use, compatibility with a
and ability to talk to most other systems,
smart terminal and file transfer program,
won’t find in other Unix communications

HELP, character translation, efficient
protocols and file transfers for text and

l.ne

TERM provide
language, auto-
unattended for

» full modem control, an extensive script
ogin and logout functions, and can be run
remote maintenance.

TERM
COMMUNICATIONS SOFTWARE

Call or write for more information.

1% CENTURY
SOFTWARE

TERM is availab e
586, 2086, IBM AT,
AT&T 3B2, IBM Pp/XT,
out how easy it is
MSDOS machines all

NOW on the Altos
Tandy Model 16, 6000, M*

, and many others. Find
get your Unix, Xenix and
talking together.

295°. 00
9558 South Pinedale

Salt Lake City, Utah 84092
(801)943-8386

visa / MC

Unix is a crai iemark of AT&T Bell Laboratories. MS-DOS and Xenix are trademarks of Microsoft Corp. CP/M is a registered trademark of Digital Research Inc.

Circle No. 251 on Inquiry Card

V THE HUMAN FACTOR

Concurrent writing allows data
transfer rates to be multiplied,
and the increased apparent size
of the disk allows much larger
files to be handled.

Other vendors have opted sim¬
ply to produce fast multiprocessor
scalar machines. The most ag¬
gressive design of this sort comes
from Flexible Computer (Dallas,
TX), whose FLEX/32 can com¬
bine up to 20,840 processor
cards, currently based on the 32-
bit NS32032 microprocessor. A
key design factor, however, is the
system’s ability to integrate many
different kinds of processing ele¬
ments. Supporting real-time as
well as number crunching appli¬
cations, the system allows both
hardware and software reconfi¬

guration to be done while the
system is running.

ELXSI (San Jose, CA), another
multiprocessor vendor, has cho¬
sen instead to use small numbers
of very powerful processors. The
ELXSI product is perhaps more of
a parallel mainframe than a mini¬
supercomputer. Its 300 MB-per-
second bus supports up to twelve
64-bit processors, each of which
is approximately equivalent in
power to a DEC VAX 8600. The
processors can share 200 MB of
memory, to be quadrupled with
the introduction of 256 kilobit
RAM chips. A company spokes¬
man notes that parallelization of
code is often far easier than
vectorization, and that such pro¬
grams as SPICE are easily and

efficiently run on ELXSI archi¬
tecture.

In its newly announced iPSC
system, Intel Scientific Comput¬
ers (Beaverton, OR) has opted to
use CalTech’s hypercube archi¬
tecture. In this design, 2N process¬
ing nodes are used, with each
node being able to communicate
directly with N other nodes. The
iPSC can be purchased in con¬
figurations of 32, 64, or 128
nodes, with each node containing
an 80286 CPU, an 80287 FPU,
and 512 KB of memory. The
system is controlled by a UNIX-
based “cube manager’’, which is
responsible for resource manage¬
ment, user interface, and other
support functions. At 25 to 100
MIPS and 2 to 8 megaflops, the
iPSC is hardly a full supercom¬
puter, but at $500,000, it does
provide a relatively economical
base for research into arbitrary
multiprocessor topologies.

Literally dozens of vendors are
producing multiprocessor or oth¬
erwise unusual UNIX systems.
February’s UniForum trade show
in Anaheim will no doubt be full
of such vendors hawking their
wares, with the offbeat systems
standing next to the YAWN (Yet
Another Workstation or Network)
products. These are exciting
times for hardware junkies, and
UNIX continues in its role as a
distributed laboratory for com¬
puter science research.

Mail for Mr. Morin can be
addressed to Canta Forda Com¬
puter Lab, PO Box 1488, Paci¬
fica, CA 94044.

Richard Morin is an independent
computer consultant specializing
in the design, development, and
documentation of software for engi¬
neering, scientific, and operating
systems applications. He operates
Canta Forda Computer Lab in Paci¬

fica, CA. ■

TECHNOLOGIES

UNIX* COMMUNICATIONS

X.25 • HASP • SNA3270 • SNA3770
Drop-in communication systems for MULTIBUS* based

computers. Offload the CPU intensive process of com¬

munication with the HORIZON"™ Series of boards from

MORNING STAR. Complete systems include your choice of

hardware and software combinations to custom fit your

data communication needs. Available for: Sun

Microsystems, Masscomp, Pyramid, Heurikon, Plexus,

NCR Tower, Sperry 5000, Celerity and more.

Call today for more information

Morning Star Technologies, Inc.

1760 Zollinger Road, Columbus, Ohio 43221

In Ohio call [6ia] 451-1883 TWX - 510 - BOO - 32*72

•UNIX is a Trademark of ATST Bell Labs • MULTIBUS is a Trademark of Intel Corp

Circle No. 292 on Inquiry Card

22 UNIX REVIEW NOVEMBER 1985

le on the cutting
computers.
omputersys-

The Firebreathers continu
edge of high performance

The most powerful line of
terns made. Gould
PowerNodes'" and
CONCEPT/32s"

Any way you
slice it they beat
the VAX'"

Our main¬
frame PN9000 and
CONCEPT 32/97
are up to twice as fast as the K/AX 8600.

And even though the mic -range
PN6000 and CONCEPT 32/C 7 are 30-50%
smaller than the VAX 11/780, they're still up
to three times more powerful

More power for a slice of the price.
Despite their superior power, our mid¬

range models cost 40% less than the VAX
11/780. Our mainframes cost about 30%
less than the new VAX 8600. The bottom
line is more power for less money.

Operating environments that are a cut
above the rest.

There’s also a choice of system soft¬
ware to consider. Gould’s unique UTX/32®
is the first operating system to combine
UNIX* System V with Berkeley BSD 4.2. So
it allows you to access virtually any com¬
mand format you want whenever you want.

And in real-time environments, Gould's
MPX/32'” operating system offers perfor¬
mance that's unmatched in the industry,
as well.

Delivery that’s right on the mark.
Unlike the VAX &600, that has up

to a 12 month wait for delivery, when you

order either a Gould PowerNode or a
CONCEPT/32 system, they’ll be shipped
within 90 days ARO.

You can also be sure with Gould you’re
getting a computer that’s backed by years
of experience- the kind of experience we
used to develop the first 32-bit real-time
computer.

If you need more information or just
have a few questions, give us a call at
1-800-327-9716.

See for yourself why VAX no longer
cuts it. Go with a Gould computer and ax
the VAX.
CONCEPT/32 and UTX/32 are registered trademarks and PowerNode
and MPX/32 are trademarks of Gould Inc. VAX is a trademark of Digital
Equipment Corp UNIX is a trademark of AT&T Bell Labs

■> GOULD

IV Gould computers have a
big enough edge/to ax the\4AX.

Electronics

Circle No. 268 on Inquiry Card

tjvIhE
T^riNAL
r RONTIER

UNIX and scientific applications: symbiosis or antithesis?

by Joseph S. Sventek

The popularity UNIX enjoys in
many segments of the computing
community is hardly a secret.
Historically, it has been the oper¬
ating system of choice on mini¬
computers in academic circles. Its
recent availability on supermicro
computers also has made it an
attractive system for the business
community. Even the home com¬
puter market has been affected
by Xenix, PC/IX, and various
UNIX work-alikes.

There is, however, one major
segment of the computational
fraternity that has received UNIX
with something less than enthu¬
siasm—the scientific communi¬
ty. This is not to imply that UNIX
cannot be applied to scientific
problems—the remaining arti¬
cles in this issue provide evidence
to the contrary. Even so, there are
some legitimate reasons for the
reticence scientists have shown
in adopting UNIX. This article
explores those reasons and offers
a prognosis for the future suc¬
cess of UNIX systems in this
marketplace.

A TAXONOMY OF
SCIENTIFIC APPLICATIONS

The first major category of
scientific applications might best
be described as “computationally
intensive”. These applications

There is one major

segment of the

computational

fraternity that has

received UNIX with

something less than

enthusiasm—the

scientific community.

are of two general types: numeri¬
cal simulations of physical phe¬
nomena and analysis of experi¬
mental data. Applications of
either type make huge demands
on a CPU’s ability to perform
floating point operations (FLOPs).
The operating system features
with the biggest impact on the
execution of these applications
are unlimited process address
space and high-level compilers
capable of generating efficient
floating point object code.

The second major category of
scientific applications is made up
of event-driven tasks, which can

be partitioned into data acquisi¬
tion systems and experimental
control systems. Each applica¬
tion must be able to respond
quickly to external events, where
this quickness depends on the
system being measured or con¬
trolled. The critical services pro¬
vided by an operating system in
support of this category include:
1) small (or bounded) interrupt
latency, 2) a user-tailorable prior¬
ity scheduler, and 3) non-block¬
ing system services accessible to
user processes.

One class of applications in
particular represents a combina¬
tion of the “computationally
intensive” and “event-driven”
requirements: computer graph¬
ics. Graphical summaries of sim¬
ulated or analyzed data usual¬
ly entail significant amounts
of floating point computation,
while real-time displays sup¬
porting event-driven applications
represent additional peripherals
for which the processing time
must be bounded. Applications of
this sort require that the operat¬
ing system provide interactive
display tools and standard graph¬
ics library calls for program
invocation.

In summary, for a single oper¬
ating system to support all major
categories of scientific applica-

24 UNIX REVIEW NOVEMBER 1985 Illustration by Heda Majlessi

UNIX REVIEW NOVEMBER 1985 25

THE FINAL FRONTIER

tions, it must provide the follow¬
ing facilities:

• unlimited process address space
(virtual memory).

• efficient high-level language
compilers.

• bounded interrupt latency.

• priority scheduling.

• user-mode asynchrony.

• standard graphics subroutine
libraries.

• interactive graphics utilities.

A SHORT HISTORY OF

SCIENTIFIC COMPUTING

Although we are primarily con¬
cerned with the relevance of
UNIX to scientific computation,
knowledge of the culture that has
developed in scientific computing
circles will help us more fully
understand the situation. It is
important to note that, after code
breaking, computationally inten¬
sive scientific applications made
the first major use of early com¬
puters. These early programs
were written in machine lan¬
guage.

As scientific computation grew
more commonplace, it became
apparent that the low-level pro¬
gramming languages of the day
(machine and assembly) were
hampering productivity severe¬
ly. In response to this, one of the
first high-level languages, For¬
tran (FORmula TRANslation),
was designed to permit scientists
to program in a language closer to
the algebraic formulas used in
their initial derivations of prob¬
lems. The tremendous improve¬
ment provided by Fortran quickly
led to its adoption as the lingua
franca of scientific computing in
the early 1960s. Since most com¬
putational resources were quite
scarce, Fortran compilers devel¬
oped a reputation for generating
very efficient object code.

One factor that often deter¬

mines the envelope of experimen¬
tal and theoretical science is the
amount of computational power
that can be brought to bear on the
problems at hand. Other system
considerations (like the command
language, the program develop¬
ment environment, and the file
system) are secondary to the

UNIX, as it is

commonly delivered, is

not able to provide the

facilities necessary to

support event-driven

applications.

number of FLOPs that can be
performed. As a result, organiza¬
tions with an insatiable appetite
for FLOPs (such as the US Depart¬
ment of Energy laboratories)
tended to order only bare hard¬
ware from supercomputer man¬
ufacturers in the early days of
scientific computing. The system
programming staffs of these orga¬
nizations would then craft mini¬
mal batch or timesharing operat¬
ing systems on top of this iron.
The highest priority item during
the development of these operat¬
ing systems was always an opti¬
mizing Fortran compiler. Other
aspects of the system were usual¬
ly made compatible with previous
systems—leading to virtual im¬
mortality for a number of primi¬
tive operating system interfaces.

As scientists started to become
involved in event-driven applica¬
tions, they naturally wanted to
use a programming language with
which they were familiar. As a
result , local extensions to Fortran

(both the language and its run¬
time library) were implemented to
permit the language’s use in
these real-time systems. Such
local extensions generally caused
a decrease in the productivity of
programmers because of the mo¬
bility of scientific researchers.
The fact that these originators
often were not available for later
support of their software meant
that others either had to live with
the problems they found or had to
re-write whole sections of code.
To guard against this, several
progressive standards were devel¬
oped for the Fortran language
(ANSI X3J3).

This all has served to make a
good Fortran compiler essential
to a scientific computer system.
The compiler must accept pro¬
grams written in standard For¬
tran and generate efficient object
code. Most scientists don’t care
much about the rest of the sys¬
tem, opting for compatibility with
the past whenever a choice is
available.

STANDARD UNIX
SUPPORT FOR
SCIENTIFIC APPLICATIONS

UNIX provides many of the
facilities necessary to support
the computationally intensive
class of scientific applications. In
particular:

• With the introduction of 3BSD,
virtual memory support in UNIX
systems was established. Berke¬
ley has continued to improve the
virtual memory support in BSD
releases, while many commer¬
cial vendors—AT&T included—
have begun to offer their own
support for virtual memory.

• A Fortran compiler (f77) is pro¬
vided. While this compiler cor¬
rectly processes standard For¬
tran, some of the design de¬
cisions in the construction of the
compiler prevent it from gener¬
ating efficient object code. (See

Continued to page 44

26 UNIX REVIEW NOVEMBER 1985

TRAINING
Whether you’re training 2000, 200, or two.. .you can select
the most efficient and economical training solution for your
unique environment.

VIDEO-BASED TF AIMING for professionally pro- INTERACTIVE VIDEODISC TRAINING, using state-
duced, consistent ti aining that is always available of-the-art technology to dynamically tailor courses
at your location.] to the individual—from novice to expert programmer.

PUBLIC SEMINA!
for Non-Program ■
Language Progn
• UNIX Administi
UNIX • Berkeley
system and to sp<

RS offered in major cities throughout the world: UNIX Overview • UNIX Fundamentals
Tiers • UNIX Fundamentals for Programmers • Shell as a Command Language • C’

amming • Shell Programming • Using Advanced UNIX Commands • UNIX Internals
ation • Advanced 'C’ Programming Workshop • Advanced C’ Programming Under
undamentals and csh’ ShelL ON-SITE SEMINARS for training customized to your

efcific groups within your organization.

ASK FOR OUR
AND CURRENT
CALL (800) 323

► Extensive Curricujla
manufacturers, s<

► Quality of Instructjioi
in teaching UNIX
UNIX-based syste

48-PAGE COURSE CATALOG
SEMINAR SCHEDULE,
-UNIX or (312) 987-4082

Three factors make tl e Computer Technology Group the experts in UNIX and ‘C’
language training:

• Experience, throijgl
with thousands

h training thousands of students worldwide in live seminars,
re using our video training at their locations.

Supporting All UNIX Versions, creating a client base of
;<j>ftware developers and end users.

»n, with instructors and course developers who are experts
and ‘C, as well as in designing and implementing a variety of
ms.

COMPUTER
TECHNOLOGY

GROUP
Telemedia, Inc.

310 S. Michigan Ave.
Chicago. IL 60604

The Leading Independent UNIX System
Training Company

'"UNIX is a trademark of AT&T Bell Laboratories.

Circle No. 247 on Inquiry Card

A
RUN

THROUGH
THE
MILL

Experiences with
scientific data analysis

using UNIX

by Robert Goff

e
W^eientific computing is a very
mixed bag. It seems that scien¬
tists are particularly imaginative
when it comes to devising appli¬
cations that find the weaknesses
in an operating system or hard¬
ware configuration. The diver¬
sity in functionality required for
even relatively simple scientific
data analysis leads to system
complexity and performance re¬
quirements almost unheard of in
other major segments of the com¬
puting industry. It also raises the
inevitable question: is UNIX real¬
ly up to it?

A complete answer, of course,
is not possible in the space allo¬
cated to this article, nor, for that
matter, in this entire issue of
UNIX REVIEW. Rather, what will
be attempted here is a discussion
of a few of the adversities await¬
ing the scientific system develop¬
er and a sampling of problems
that UNIX has played a key role in
solving.

CONVENTIONAL WISDOM

As in any other discipline,
much of the “knowledge” sur¬
rounding the use of UNIX for
particular types of applications

comes in the form of old wives’
tales. Most of these tales have
some basis in fact or history, but
none should be taken at face
value without investigating the
implications for the specific ap¬
plication at hand. Many of the
restrictions that purportedly be¬
set UNIX either only apply to a
restricted set of problems or re¬
flect deficiencies that already
have been solved over the course
of the operating system’s evolu¬
tion. The old unstablefile system
bugaboo is a classic example of a
malady that no longer plagues
UNIX.

Conventional wisdom says if
you are trying to acquire even a
moderate amount of data in real
time, you shouldn’t use UNIX.
Everybody knows that UNIX does
not function well when subjected
to the high interrupt rates char¬
acteristic of this kind of machine
activity. Either you won’t be able
to keep up with the incoming data
or you’ll have to assign the acqui¬
sition such a high priority that
the machine will become slug¬
gish, the clock will lose time, the
disk will blow revs, and the crash
rate will go up alarmingly. But

28 UNIX REVIEW NOVEMBER 1985 Illustration by Stephen G. Luker

REAL WORLD EXPERIENCES

how much of this is really true?
And what does it mean to your
application?

At the heart of this consider¬
ation is the question: what do
you mean by real time? A simi¬
lar, equally perplexing issue is the
need to come to grips with what a
development environment is
and how that differs from a
production environment. The
virtues of UNIX in a development
environment are well known by
now and no doubt account for a
large component of the system’s
popularity in the research com¬
munity. After all, the major cost
component in most development
projects is people time—a cur¬
rency that well displays the value
of UNIX. But does this mean that
the system’s value goes down as
we get closer and closer to freez¬
ing the code?

In scientific data analysis, a
similar contrast often is suggest¬
ed between off-line and re¬
search mode (interactive) pro¬
cessing. Does it become nothing
more than a question of volume,
or is there something fundamen¬
tally different in the way these
two types of computing are done?
If a difference is suspected, is it
borne of convention or necessity?
Can UNIX support a high volume
processing environment? Alas,
there is no universal answer. The
question that really needs to be
asked is: what is meant by “high
volume"?

REALTIME AND UNIX

As a simple illustration, I will
describe a data acquisition sys¬
tem now underdevelopment. The
hardware is a MC68000 Multi¬
bus box running 4.2BSD. We in¬
tend to acquire approximately 20
channels of seismic data and
digitize it at 20 samples per
second to 16-bit accuracy. The
sampling operation must be syn¬
chronized with coordinated uni¬
versal time (UTC) to obtain an

absolute sample timing uncer¬
tainty of less than 20 millisec¬
onds. The application also must

—0-1—

It seems that scientists

are particularly

imaginative when it

comes to devising

applications that find

the weaknesses in an

operating system or

hardware

configuration.

run in the presence of other
processes that route the data to
its final destination over a com¬
munications link.

In view of the relatively low
data rate and the short time
allotted for device driver develop¬
ment, we chose a simple, inex¬
pensive multiplexed analog-to-
digital converter board offering
two major programming modes,
both of which generate an inter-
rupt-per-sample. In retrospect, it
probably would have been wiser
to spend about half again as
much money on this module to get
a board with some on-board buf¬
fering and a DMA bus interface.
This was rejected, however, since
all the boards that we found
required some custom firmware
development for an on-board mi¬
cro. We simply chose not to devote
that much time to this aspect of
the development.

The device driver for the sys¬
tem took about two weeks to write
and was designed to allow us to

use the board in any of its pro¬
gramming modes with any config¬
uration of inputs. We knew that
at a rate of approximately 400
interrupts per second, problems
were likely, so we paid particular
attention to streamlining the in¬
terrupt handler in the hope that
we might avoid burning system
time at an inordinate rate. Of
equal importance was the fact
that we needed to maintain an
overall system throughput that
would allow us to keep up with all
of the tasks associated with refor¬
matting and transmitting the
data—and would allow us to
maintain a reasonable set of rec¬
ords on the state of the system’s
health. The upshot is that the
system had to be designed so that
it wouldn’t monopolize critical
system resources unnecessarily.
This amounted to integrating ac¬
quisition tasks into the system in
a way that was polite to other
activities.

We next wrote some user-level
code to read the data. This is
where we really started to learn
how the system would react. The
first programming mode we tried,
known as random mode, re¬
quired that the interrupt handler
supply a new channel and re-arm
the converter trigger for each
sample. We started experiment¬
ing with relatively low trigger
rates before cranking up the
speed to see if we could reach our
goal of an aggregate conversion
rate of 400 samples per second.
The actual conversion process
takes only about .4 milliseconds,
so we could tolerate interrupt
service delays of as much as 24.6
milliseconds before data over¬
runs would occur.

We were somewhat disappoint¬
ed to learn that even at a low 100
sample-per-second rate, we ex¬
perienced an unacceptable num¬
ber of data overruns—even when
the machine was unloaded. We
tried busy/wait loops in place of

30 UNIX REVIEW NOVEMBER 1985

kernel sleeps and used other
methods that made the acquisi¬

tion less polite bun it quickly
became clear that we were on the
wrong track. Without placing the

hardware interrupt priority of the
board considerably higher than

we wanted, we could pee that this
mechanism was not going to
work.

The other programming mode
that was available to us is called
scan mode. Under this scheme, a

trigger is used to initiate an entire
scan that starts ak some low
channel number and proceeds to
some higher channel number.

The trigger begins tne first con¬
version and upon completion,
issues an interrupt The act of
reading the data initiates conver¬
sion on subsequent Channels un¬
til the high channel is reached, at
which time an end-of-scan is
signaled and the board stops,
waiting for the next trigger. Note

that the sequence involves field¬
ing just as many interrupts as
random mode would require but

allows the interrupts to be spread
out in accordion fashion over the
full time interval allotted for the
scan.

In order to use scran mode, we
knew we would have to give up
the generality of being able to
sample the channels in any order.

We decided, though, that this
sacrifice was of minor practical
importance since the data had to
be massaged before transmission
if samples were to be rearranged
with little penalty. Of more con¬

cern was the fact that scan mode
would not allow ms to control
absolute sample timing as well.

Conversions became a function of
how quickly we could get around
to servicing the interrupts for all
the earlier channels in a scan. To
solve this problem] some instru¬
mentation was necessary to de¬
termine the length pf the average
scan. If we could get a good

estimate of the constant portion

of the delay between the trigger
and conversion for each channel,

we felt we could at least remove

—2-3—

The major cost

component in most

development projects

is people time—a

currency that well

displays the value of

UNIX.

that component of the timing
error.

Using scan mode, we found
that we could speed up the aggre¬

gate conversion rate to more than
1 000 samples per second in the
presence of other processing be¬

fore we experienced any data
overruns. It should be added that
the prototype system was con¬
nected to other machines at our

facility via a local area network
and had no disk of its own. A
fairly severe test of the system
came when we inadvertently left
the rwho daemon running during
one of our test runs. The rwho
daemon presents an intermittent
load to the system and makes
network traffic, in particular,

fluctuate wildly. These tests led
us to another modification of our
approach.

We had allowed the interrupt
handler to place newly arriving
samples into a buffer (allocated in
the device driver) that could hold
about 1 second of incoming data.
We devised a simple wrap-around
scheme for handling buffer over¬
flows and a sequencing method to
report them as they occurred. The

user-level code we were using

read one scan at a time and
placed the data on disk files
(across the network). Only when

we started to add functionality
did further problems arise.

It seemed we just couldn’t

make the program run fast
enough (or get enough of the CPU)
to keep up with the data. The
application would run for a while
and sooner or later produce a
buffer overflow. I suggested that

we instrument the code until we

really understood where the bot¬
tleneck existed. A few hours later,
one of the programmers on the
project mentioned that he’d no¬

ticed rwho running while he was
performing his tests, leading him
to wonder if this might be the
source of the trouble. Of course,

his comment led us right to where

the real problem had been all

along—in the device driver’s
small buffer size. When we ex¬
panded this buffer to accommo¬

date 8 seconds of data, all prob¬
lems of this nature disappeared.

WHAT ARE THE LESSONS?

The two solutions illustrated
above are not terribly surprising
in and of themselves—in fact

they are fairly obvious to everyday
users of UNIX. What is surprising
(or at least was to me) is the
magnitude of the effect they por¬
tray. I never would have thought
that we could squeeze a ten-fold
sampling rate increase out of our
system simply by easing the criti¬
cal path problem presented by the

interrupt service mechanism. Nor
would I have dreamed that we
would have to let our user-level

code ignore the incoming data
stream for anything close to
8 seconds during routine pro¬
cessing.

What this illustrates is that,
compared to smaller, less func¬
tional operating systems, UNIX
gives the appearance of a higher
degree of asynchrony in its man-

UNIX REVIEW NOVEMBER 1985 31

REAL WORLD EXPERIENCES

agement of machine activities.
On the face of it, this may seem to
be a disadvantage in that system

buffers need to be larger and

critical paths may become more

numerous and difficult to fore¬
cast. But, though critical path
management may be more impor¬
tant, the facilities provided by the
operating system for doing it are
more numerous and general, and

the help they provide to the

system developer may result in
better overall system throughput

when the processing load is ana¬

lyzed as a whole.

As the limitations on system

throughput are explored, it’s in¬
variably found that one critical
resource or another is in short
supply. Under UNIX, there may be
a few more procedure calls be¬
tween you and the handling of an

interrupt or the reading of some

data—and this may affect maxi¬
mum system throughput if the
resource in short supply is CPU

time—but UNIX also provides
some tools for use in dealing with
these problems.

Without extraordinary effort,
anything approaching total utili¬

zation of all system resources is

unlikely. So the task faced by the
system developer is to offload

processing from resources that
are approaching saturation to
those that are under-utilized.
UNIX helps with these efforts.

In the final analysis, the re¬
source that the system developer
must manage most carefully is
development time. After only two
weeks of development, we had a
device driver with only one minor
deficiency—one that was easy to
remedy. Further, the level of func¬
tionality and flexibility we were
able to achieve in that time was
significantly improved by the
completeness and generality of
the model on which UNIX de¬
vice driver implementations are

based. The availability of facili¬
ties such as a general-purpose

kernel sleep mechanism can be
invaluable when efficient use of

critical resources becomes im¬
perative.

Since this application does not
tax most of the resources pro¬
vided by our machine (the CPU in
particular), it is clear that a
significant increase in capacity
should be possible. The job of
implementing a device driver for a

higher performance A/D system
would not, in my estimation, be

significantly harder or more time
consuming than for the simple

device we have used. Further, the
impact of the acquisition on the

remainder of a machine’s pro¬
cessing load should, if anything,
be more controllable since the
device in question should have

—4-5—

Without extraordinary

effort, anything

approaching total

utilization of all system

resources is unlikely.

more intelligence and its fea¬
tures should be fairly accessible.
Thus, custom firmware develop¬

ment aside, an attractive expan¬
sion path for the system seems to
exist. In our case at least, this
owes in part to our choice of UNIX

to do the job.

DIFFERENT GOALS,
DIFFERENT APPROACH

To show how some of these

issues stack up in the larger
scheme of things, I will describe
another data acquisition system I
took part in developing. The main

emphasis of this project was di¬
rected toward doing a small
amount of processing on a large

volume of data at a minimal
hardware cost. To accomplish

this, a PDP-11/23 system run¬
ning RSX-11M was chosen for
the development work, with the
idea that we would run the pro¬
duction system under RT-11 once
we were done.

The project involved acquiring
30 channels of data from a micro-

wave telemetry link connected to

a small array of seismic stations
some 70 miles away. Each chan¬
nel was to be sampled at 250

readings per second, making for

an aggregate data rate of 7500

samples per second—one consid¬
erably higher than in the previous

example. The only processing to
perform, however, consisted of
demultiplexing and time-stamp¬
ing the data before passing buffer

loads of it to another machine (a
PDP-11/34), via DMA, for further
processing.

Since no off-the-shelf inter¬
face was suitable for connection
to the telemetry, we had to devel¬
op our own. We chose to build a
fairly fancy device for offload¬
ing the demultiplexing from the
11 /23 CPU. This DMA device only
required that it be told from time
to time (about once a second) the
hunk of memory into which it

needed to poke its data. It then
signaled the CPU with an inter¬
rupt whenever a buffer filled and

a new address was needed.
Since disposing of the data also

was to be done via DMA, most of
the heavy work could be handled
by specialized hardware. The

main tasks for the CPU consisted
of reading time information from

a UTC clock, attaching that infor¬
mation to buffers as they were
filling, doling out buffer address¬
es as needed, and responding to
operator requests for system
monitoring information.

As it turns out, several things
slowed the pace of our project, not
the least of which was our initial
unfamiliarity with the DEC oper-

32 UNIX REVIEW NOVEMBER 1985

ating system and hardware. We

had decided early on that since
the development of our teleme¬
try interface would take a fair

amount of time, we would have to
undertake the software develop¬
ment in parallel. Ini dal develop¬
ment proceeded rather slowly and
resulted in a system that was far
from expandable either in capac¬

ity or functionality.
By the time the system finally

gave in and showed signs of

working, we had evolved to a
standalone-system approach for

the software. This is not to say
that the operating system we had
chosen was unsuitable or defi¬
cient, but simply that we found
we were using less and less of its
facilities as time went by. We
finally decided that we could do
without it altogeth er since the
activities we were trying to man¬
age were few in lumber and
highly synchronous in nature. In
doing so, we gained considerably
tighter control over utilization of

the resources at hand.
The definition of this system

was characterized ty fairly tight
machine constraints, a narrow
set of goals, and the fact that the
desired result of our development
was a black box—a prime candi¬
date for cross-develc pment under
UNIX. After re-writing our early
assembly language software in C
(and purchasing a 0 compiler for
the 1 1 /23), we now have a system
that can be modified easily and
yet still boasts the high perfor¬
mance/cost ratio we were looking
for.

WHAT ABOUT ANALYSIS?

Scientific data analysis is an¬
other class of problems for which
UNIX has some unique solutions.

Like people, analysis techniques

come into the work , grow up, get
old, and sooner or later die.
During the early stages of this life

cycle, a technique’s developers
will try to ascertain the applica¬

bility of their new analysis tool, so
a fairly rough and unsophisticat¬
ed implementation of the idea

usually will suffice. If a scheme

proves useful and is allowed to

continue its growth toward matu¬

rity, it will be cloned many times
and the copies that are sent out
into society will be molded by
their environment into tools di¬
rected at the specific needs of
particular projects. As these tech¬
niques grow more sophisticated,

some may be trained toward high¬
er and higher degrees of special¬
ization. This transformation may
leave little of the essence from
which the techniques came. At
many of the stages along this
evolutionary path, malleability

may be the factor that determines

—6-7—

Like people, analysis

techniques come into

the world, grow up,

get old, and sooner or

later die.

whether a particular instantia¬
tion will be a candidate for fur¬
ther duplication or be discarded
in favor of a younger sibling.

A class of techniques impor¬
tant to seismologists is derived
from the realm of signal process¬
ing, and is roughly categorized
as time-series analysis. This
extended family of processing
schemes can be sub-categorized

in various ways, but the building
blocks include things like dot

products, vector products, FFTs,
weighted sums, and matrix multi¬
plies. These are the fingers and
toes of the individual packages. In
the same way that you can tell
girls from boys, some people

think that you can differentiate
between high-volume production
packages and research tools.
Does this distinction mean that
the parts are never interchange¬

able? Given that creative surgery
is often the genetic engineering
methodology of choice for soft¬
ware developers, we might ask,
“Can we graft the toe of the
fullback onto the foot of the
ballerina and expect good re¬
sults? Will we get a female track

star or end up with a clumsy

dancer?”

PARTS IS PARTS

A key method for increasing

the predictability of surgery is to
make processing modules work
more like spare parts than fingers

and toes. Over the years, comput¬
ing has generated many helpful

models for the fabrication and

interconnection of these parts—
among these are processes, pro¬
cedures, libraries, include files,
and macros. Tools for creation,
routine maintenance, repair, and
replacement also abound in lan¬

guage compilers, linkers, editors,

library managers, and file sys¬
tems. It should be clear, then, that

among the important features of
an operating system used for
development are the availability,

generality, flexibility, and porta¬
bility of these models and tools.

An ongoing project comes to
mind that illustrates how some of
the features offered under UNIX
are helpful when applied to a
specific class of scientific data
analysis. In the August, 1985,
issue of UNIX REVIEW, Paula Haw¬
thorn describes array processors
as backend machines that are
used to offload specialized tasks
from the general-purpose hosts
that they serve. An increasingly
popular configuration for these
allows you to embed a few small
modules in your system by plug¬
ging them right onto the host's
bus. While less capable than their

UNIX REVIEW NOVEMBER 1985 33

REAL WORLD EXPERIENCES

larger, standalone counterparts,

they are often easier to use and

less expensive to purchase and
maintain. We recently purchased
one of these and have begun to
put together some of the building
blocks to do time-series analysis
with it.

After installing the hardware,
we began to unpack the software
that came with the unit. Since
several people were to work on the
project, we had to try to find a

sensible home for all of the var¬

ious pieces, but we discovered
that some of the objects we had to
deal with were a little foreign to
our experience. The compiler and
linker supplied for the develop¬
ment of AP microcode followed
UNIX conventions closely enough

that they could be installed in an

official place for all to use. But
what were we to do with all those
things called task files that the

compiler and linker produced?
And what about the mini-operat¬
ing system for the AP that has to
be downloaded with each task in
order to run?

During the previous several

years of working with UNIX, we

had adopted a uniform directory
template for software develop¬
ment projects. Once we under¬
stood where task files fit and
knew what other pieces of soft¬

ware would need to find them, we
easily determined how to extend
this system to accommodate

them and even how to build
makefiles to provide for their
maintenance. Because the mech¬
anism embodied in the make
utility is so general, we instant¬
ly had a powerful tool at our dis¬
posal for dealing with what
turned out to be a relatively com¬
plex and recalcitrant hardware/
software subsystem. This turned
out to have hidden benefits that

showed up not long afterwards.
Following a few weeks of deal¬

ing with the all too common
problems of incomplete and mis¬

leading documentation and wres¬

tling with the hidden eccentric¬

ities that all new systems exhibit,
we became fairly confident that
we would be able to produce some
spectacular processing by the
time we received a visit from the
people funding the project. Since
plugging in the unit worked in

much the same way as a floating
point accelerator, it probably was
not illogical for the clients to

assume that the unit would be

—8-9—

UNIX is constantly

evolving and most of us

in the scientific

research community

hope it will never lose

its ability to do so.

installed in the system in such a
way that other software could
continue to function in its ab¬
sence, with only a speed penalty
to pay. While attempting to ex¬
plain to these clients why the
world really didn't work that
way, it occurred to me that if we
took a larger view of our objec¬
tives, maybe the world really
should (and could) work that way.

One of my golden rales is that
unless a really significant im¬
provement in functionality or ca¬
pacity can be achieved by hack¬
ing the kernel, we don’t. If you
consider device drivers as part of
the kernel, however, I violate my

rule routinely. For this reason, we
rejected the idea of developing a
full implementation using the
trap mechanism or of modifying
the C system libraries. We did so
because we felt these approaches

would be too intrusive for our

tastes. Instead, we investigated

the method of substituting a fun¬
ny device driver for one we used at

the time to talk to the AP. Al¬

though we knew this probably
would make the kernel grow sub¬
stantially larger, it looked like an
attractive idea.

What we finally settled on,

though—for the time being at
least—was a parallel library ap¬
proach. In order for a processing

module using the AP to interface

with the rest of the system, it
must be wrapped in some C
clothing (which could be woven

together using Fortran, or any
other language for that matter;
the point is that one must have
software that runs in the host). By
devising a naming convention for
accessing task files, we were able
to implement modules that could
be emulated exactly by host-only
software that had been carefully
placed in a parallel library, with
entry points accessible by identi¬
cal calling sequences. Had I the
source to the AP linker and the
time to do it, I truly would have
liked to make the linker under¬
stand the files produced by the ar
utility, thus making the job of
building task files measurably
easier.

The organization of some of the
processing schemes we have ex¬

plored suggests that, for some
applications, a host module may
want to download several task
files successively. For this reason,
we might have explored archiving
task files into libraries that could
be accessed at runtime. Alterna¬
tively, since AP code can be
expressed in a relatively compact
fashion, we also could have de¬
vised a scheme under which it
could be viewed by the host

software in much the same way
that compile-time initialized data
is viewed (this is the sort of
interface provided with many
APs). If we had adopted symbol

34 UNIX REVIEW NOVEMBER 1985

a Is, tables, procedure c
formats that were co

those used by existiiji;

might have been
these into helping
scheduling and mar
AP processing functions.

and file
n|sistent with

g tools, we
to trick

ijis with the
agement of

able

CONCLUSIONS

Naturally, the exa
here fall short of
analysis of the ap
UNIX to scientific a
even within the res
problems they
constantly evolving

us in the scientific
munity hope it will
ability to do so. Glittdr
ities about the syste
ness when applied to
of problems (such

rpples offered
thorough

dlicability of
pplications—

tricted set of
address. UNIX is

and most of
research com-

i lever lose its
inggeneral-
m’s useful-
a large class

las real-time

applications) are almost certainly
ill-advised, but an understanding
of the specifics of the application

at hand may well lead to a UNIX

solution.
What can be said of the solu¬

tions we eventually settled on?

Were we able to achieve accept¬
able data acquisition throughput

at an acceptable cost in hardware
by using UNIX? Yes, given the
other goals of our project. Were we
able to sustain a high-volume
processing environment under
UNIX? Yes, given the flexibility
required of our approach. Can
specialized versions of UNIX that
have been tailored for specific
environments still be considered
UNIX? This can be a religious
question, since what you like
about UNIX will largely determine

what you think UNIX is or should

be. Is UNIX really grown up
enough to support large-scale sci¬

entific research, given the variety
of processing constraints scienti¬
fic problems impose? I think it is,

but only time will tell.

Mr. Goff is Vice President for
Computer Applications at Science
Horizons Inc., a California research

firm. Before helping to found this
organization, he served as Staff
Scientist and Senior Systems Engi¬
neer for Systems, Science and Soft¬
ware (now S-Cubed) for approxi¬

mately 11 years. During this time he
was a key contributor to software
systems now in use at the Center For
Seismic Studies, a UNIX-based,
DARPA-sponsored seismic research

facility. ■

UNIVERSITY OF CALIFORNIA, BERKELEY

COMPUTER FACILITY
MANAGER

World renowned University is recruiting for an experienced indi¬
vidual to serve as Administrative/Technical Manager of a large
academic computing ins allation with a multi-million dollar bud¬
get and a staff of 40 p ogrammers and technicians. Coordinate
departmental staff and faculty on campus-wide networking and
assist faculty researche s with the planning of new equipment.

REQUIRES:
Proven experience in managing comparable operations and tech¬
nical staff, preferably n an academic or institutional setting.
Substantial budget/fisi al experience to develop and monitor
multi-million dollar operations is essential. Must possess knowl¬
edge of technical requir rnients for computer installations. Candi¬
date will possess a UNIX background and knowledge of other
major operating systems.

SALARY: $47.7K—S57.6K and excellent benefits program.

UC Berkeley
Personnel Office

2539 Channing Way
Job #06-148-11

Berkeley, CA 94720

(415) 642-2348
UC BERKELEY IS AN AA/EEO EMPLOYER

Circle Mo. 291 on Inquiry Card

Communications Software for

_WANG

.Data General

_Jat&t

_PRIME

—EES
X M-inln -foppw

Micros
Minis

Mainframes IBM

Any computer with BLAST can talk to any other computer with BLAST, the

universal file transfer software linking many different computers, operating
systems, and networks No add-on boards, use any asynchronous modems

or direct-connect for fast, error-free data transfer, even via noisy phone
lines, satellites, LANS, and packet networks

$250/micros $495-895minis $2495 up/mainframes

Communications Research Group 1-80024BLAST

8939 Jefferson Hwy Baton Rouge. LA 70809 504-923-0888

Circle No. 290 on Inquiry Card

J\ichardson. TX, seems like
an unlikely locale for a guy from
Brooklyn, but Steve Wallach
seems to have adjusted to his
new home. As the Vice Presi¬
dent of Technology for an ex¬
panding, young company, he
has taken part in the area's
growth—and as a fellow with
big ideas, he has demonstrated
a Texas-style appreciation for
the proper scale of things.

It was a little over a year ago
that Convex unveiled the C-l, a
64-bit integrated vector pro¬
cessing system said to offer a
quarter of the power of a Cray
for a tenth of the cost. The
numbers the C-l has put up, in
fact, are impressive: able to
handle up to 128 MB of memory,
the machine has been bench-
marked at 60 megajlops.

The notoriety this innovation
has brought is familiar stuff
to Wallach. Indeed, it was
Wallach's own notoriety that
helped launch Convex. As one
of the featured characters in
Tracy Kidder's best-selling The
Soul of a New Machine (Little,
Brown, 1981), Wallach has long
had a reputation good for open¬
ing doors.

In the book. Wallach was
portrayed in his role as the
principal architect behind Data
General's 32-bit Eclipse super¬
mini series. Later, he served as
Product Marketing Manager for
Rolm Corporation's 32-bit MIL-
spec minicomputer.

To explore the suitability of
UNIX for number crunching,
UNIX REVIEW asked Rob War-
nock, who is himself an in¬
dependent computer architect
with nearly 20 years of experi¬
ence, to ask Wallach about
some of the problems that al¬
ready have been dealt with—
as well as some of those that
have not.

REVIEW: There seem to be a
large number of companies pro¬
ducing what you call “afforda¬
ble supercomputers". Why is
that?

THINKING

BIG
An interview with Steve Wallach

36 UNIX REVIEW NOVEMBER 1985 Photos by Don Johnson

WALLACH: The reason is actual¬

ly fairly simple. There’s a phe¬
nomenal gap in the market.

When we started this company

[Convex], the companies making
32-bit superminis were talking

about how the next big market
was going to be office ai tomation.

It was clear that they weren’t
going to do anything tc solve the
problems of the people trying to

do simulations. The folks in the

scientific market just aren’t in¬

terested in office automation and
menu-driven editors. r"hey want
their Fortran and C programs to

run fast. So we saw ar opening.
New companies tend to be most

successful when they re able to

create a new markei. Tandem
created a market. Apple created a
market. And we’re creating a
market. Much like those other
companies, we’ve identified a

niche and we’re right on it.
Now—like in everything else—

once you see a good tf ing, every¬

one immediately follows.

REVIEW: Why did
was necessary to
low end instead oj

Cray performance

price?

you feel it
after the

offering fall
ct a better

are
(oi

ital

WALLACH: There

and 50,000 VAXen
machines). It’s a lot e
customer to get cap
zation for $500,00C

$10,000,000. DEC
eral have conditioned
to budget $500,000 e\
a new machine. Cray,
not conditioned the
spend $10,000,000

should not be forgotte
first Crays were bo
DoD and DOE. Even
company, $10,000,00'

spend.

REVIEW: Why didn
of supermicros or
satisfy the market

ment?

WALLACH: A womaji

after nine months,
any shortcuts; nine
what it takes. At sorr e
program performance

110 Crays
VAX-class

4sier for the
authori-

than for
Data Gen-

the market
ery year for
hough,has
market to

every year. It
n that the

i|ght by the
for an oil

0 is a lot to

t networks
superminis

require-

gives birth

There aren’t
months is
point, your
degrades to

At some point, your

program performance

degrades to the level of

your most constrained

component. You only

can go as fast as the

slowest chip.

the level of your most constrained
component. You only can go as
fast as the slowest chip.

Micro architectures simply are

inappropriate for a lot of the
applications out in the market. To
be quite honest, a lot of the micros
are just overgrown 8-bit and 16-
bit machines, but people still try
to run 64-bit problems on them.

There’s also another issue. Ev¬

eryone talks about CPU perfor¬
mance these days, but the major¬
ity of applications out there are
memory-bound and I/O-bound.
It’s important to know how much
main memory you have and how
fast your I/O is. That may have
more of an effect on your perfor¬

mance than anything else.

REVIEW: Does Amdahl's Rule

apply in the computer environ¬

ment? [Amdahl's Rule holds
that for each instruction per
second a machine should have
one byte of main memory and
one byte per second of I/O band¬

width.]

WALLACH: It applies to every

machine, but everybody seems to
get hung up on the CPU. Let me
give you a simple example: I have
one machine that cranks out 20
MIPS and another machine that

does 10 MIPS. The 20 MIPS ma¬
chine has 20 MB of memory, in
keeping with Amdahl’s Rule. The
10 MIPS machine has 100 MB of
memory. My application happens
to have 100 MB of data, which is
to be referenced several times
during the execution of the pro¬

gram. In the latter case, that
means that every time I make a
reference to memory, my data is
always there. On the 20 MIPS
machine, 80 percent of my refer¬
ences are going to go to disk,
which means 18 msec access time
per access. Guess what? The 10
MIPS machine runs the applica¬

tion faster.
Applications and the people

who buy computers are get-

UNIX REVIEW NOVEMBER 1985 37

WALLACH INTERVIEW

ting more sophisticated. Rather

than just running CPU bench¬
marks, now there are system-
level benchmarks that look at I/O
and determine how sensitive it is
to physical memory.

REVIEW: The second part of
Amdahl's Rule holds that you
should have one byte per sec¬
ond of I/O for every byte of
memory.

WALLACH: Look, at one point

there was a thing called Gross’s
Law. It claimed that you needed to

spend the square root of price to

double your performance. Now,
of course, we know that’s bull¬
shit. Just compare the VAX and
the MicroVAX II. Semiconduc¬
tor technology obviously has
trashed that law. With higher-

performance I/O and higher-per¬
formance main memory, I think

the rules have changed. Like with

the Cray 2 and its two gigabytes of
physical memory: if you put ev¬
erything in memory, who cares
about I/O?

REVIEW: Are you already feel¬
ing a push to put more than 128
MB on your system?

WALLACH: Yes, a strong push, in
fact. When we started the com¬
pany and said we were intending
to build a system with 120 MB of
memory, people said, “God, what
a waste of time and effort! Who in
hell is going to buy that? Just
think of the expense!’’ That’s
because no one anticipated that
the price of 256K RAMs would fall
as much as it has. We now hear
that, “Customers lust for mem¬
ory. ’ ’

I always explain this by telling
a joke: A guy walks up to an
Indian who is saying, “Chance,
chance.’’ So the fellow asks,
“‘Chance’? I thought Indians al¬
ways said ‘how’?’’ “No”, says the
Indian. “Already know how, just
want chance.’’ Supercomputer
users always knew what they

could do with more physical

memory if they had it, but they
never got the chance because—
unless you worked for the govern¬

ment—you couldn’t get your
hands on a machine with a giga¬
byte of memory. Now, though, we
actually have sold several ma¬

chines with over 100 MB of
memory.

Thus, the question becomes:
do you really have to have all that

memory? Yes, even for UNIX.

This is interesting: 4.2BSD has a
notion of disk cache that keeps
you from having to go to disk if

your block data can be located by

the software that maintains the

cache. With all this physical
memory, we can make the disk

cache as big as we like, so when¬
ever we run up against I/O bench¬
marks, we just define a disk
cache large enough to keep us
from having to go out to disk. As
a result, our machines have
screamed through benchmarks.
Some people cry, “Foul! That’s
not a fair benchmark because I
can’t do that on my VAX’’—to

which, of course, we respond,
“Right”. Then we smile and don’t
say anything more.

REVIEW: Besides disk cache,
what aspects of UNIX have you

found well suited to your
needs?

WALLACH: Most things are fine.
But the I/O structure is really
lacking for a Convex-class
machine.

REVIEW: What aspect of I/O is
a problem? The fact that it's
synchronous?

WALLACH: Yes. And to deal with
that, we’ve added disk striping—
just like you now have on a Cray.

Striping allows you to take one
disk file and make it go across
multiple spindles. For example,
we can get approximately 1 MB a
second out of a single Fujitsu
Eagle. A file striped across four

Fujitsu Eagles, though, can get 4

MB a second of I/O. We’ve also
added asynchronous I/O, mean¬
ing that if you do a disk or tape

reference, you can keep going and
use the signal mechanism of 4.2

to synchronize yourself. That’s
an issue that always comes up.

REVIEW: Why did you choose
4.2 over System V?

WALLACH: When we started the

company in September of 1982,
we knew we wanted to put togeth¬
er a virtual memory machine.
Berkeley had a virtual memory

system; System V did not. We
wanted networking and TCP/IP:
4.2 had it; System V did not. And,
let’s face it, 4.2 traditionally has
focused more on scientific appli¬
cations than on commercial ones.
Since we’re after a scientific cus¬
tomer base, 4.2 made sense. We

just made a business decision.

REVIEW: So is 4.2 that much
better suited to scientific appli¬
cations?

WALLACH: At a base level. But
neither 4.2 nor System V has the
capabilities that a lot of people
want. They don’t have the disk
striping or asynchronous I/O—
and they lack a lot of real-time
features like pre-emptive sched¬
uling and the ability to lock pages
into physical memory. What it
boils down to is that the majority
of scientific users are accustomed
to their VMS, CDC, or Cray oper¬
ating systems. Now, when they

look at UNIX, they say, “This is
great. But I’m used to these five
features. Put them on and you’ve
got a sale.” They don’t care about
UNIX, SCHMUN1X. It’s features,
functions, and benefits that they
want.

REVIEW: I've always thought
that I'd be happy if I could get
my hands on a UNIX system
that had TOPS-10 real-time
features.

38 UNIX REVIEW NOVEMBER 1985

Without FORTRIX; moving up to C

FORTRIX

can cost you a bundle!
The bundle we're referring to consists of your

existing FORTRAN programs and files. Costly items
you'll have to discard when you move up to C,
unless you save them with
FORTRIX™!

Here at last is a program that
automatically and rapidly converts
FORTRAN code to C code, allowing
you to salvage your FORTRAN
material at approximately 600 lines
per minute. This incredible speed
allows a single programmer to con¬
vert, debug and put into operation a
typical 50,000 line package in only
one to two weeks. Plus, the resulting
"C" program will run 15% to 30%
faster than the original FORTRAN
program, while occupying 35% less
disk space! And the system even
helps you learn coding in C language |
as you compare your own familiar
FORTRAN programs with the
corresponding C language w J
programs generated by m 't J
FORTRIX.™ ' '

There's a complete selection of FORTRIX™ versions
to suit the full range of user requirements: Original
FORTRIX™-C, which translates FORTRAN code to C

code, allowing input data files to remain
fully compatible with your new C pro¬
gram; FORTRIX™-C +, with the added
ability to handle COMMON and
EQUIVALENCE statements, character
handling and direct I/O; FORTRIX™-C', the
complete FORTRIX™-C+ package con¬
figured for non-UNIX* systems including
VAX/VMS; and FORTRIX™-C/micro. stand¬
ard FORTRIX configured for use on the
IBM PC and compatibles.

FORTRIX™ has already been installed
on 26 different brands of hardware, so

whichever FORTRIX™ version meets your needs, you
can be sure it will exceed your expectations in terms
of speed and cost savings realized. Why not act now

to save your bundle? Get full technical details,
plus references from among over 100
satisfied licensees, from Jim Flynn at (212)
687-6255, Extension 44, or write to him at

Rapitech Systems Inc., Dept. A2,
wfV 565 Fifth Avenue, New York, NY 10017.

FORTRIXr Fortran-to-C Conversionware™ from

Rapitech
Systems Inc.
Telephone (212) 687-6255/Telex 509210

‘UNIX is a trademark of AT&T Bell Laboratories
Circle No. 256 on Inquiry Card

WALLACH INTERVIEW

WALLACH: Then you might be
interested in knowing that we
have a customer who’s bringing
up a TOPS-20 shell on top of
UNIX. There are a lot of program¬
mers who are used to TOPS-20.

REVIEW: In light of that, why
has UNIX taken over the super¬
computer so quickly?

WALLACH: It’s very simple—
standards. In any DP shop, the
biggest life-cycle cost is Joe in the
software department. When peo¬
ple come out of school today, they
tend to know UNIX. If you’re
trying to hire programmers, you
pay attention to that because you
know if you have UNIX, your new
hires are productive after a week.
If you have some proprietary
operating system, you’re looking
at a six-month training cycle.
That and the transportability of
code are the name of the game for
UNIX.

REVIEW: At one time, many
vendors were afraid of stan¬
dard operating systems.fearing
that their customers might
leave. Has that changed?

WALLACH: The bigger you are,
the less you like standards be¬
cause you want to lock people in.
Standards mean that the lock
these companies once had isn’t a
lock any more.

REVIEW: Has your commitment
to UNIX caused you any busi¬
ness problems?

WALLACH: The only problems
relate back to the fact that while
these people want to use UNIX,
they also want maybe 10 func¬
tions from their old operating
system—like one for tape han¬
dling, for example. You know,
UNIX is not very big on handling
magnetic tapes. But certain in¬
dustries are very dependent on
tape—the geophysical [oil] indus¬
try, for example. UNIX also does
not support IBM communica¬

tions, but, believe it or not, there
are still lots of people out there
who want IBM communications.
So the problem is that while UNIX
is a very good development sys¬
tem, it has some real drawbacks
in a production environment.
Most of the time we’ve spent on
UNIX has been used to build up
production and real-time capa¬
bilities—as well as some system
management features so that

Everyone talks about

CPU performance

these days, but the

majority of

applications out there

are memory-bound

and l/O-bound.

customers don’t have to hire a
Ph.D. from UC Berkeley to handle
their system administration.

One of the things that we’ve
found as we’ve added these fea¬
tures, though, is that people will
say, ’’That’s not within the UNIX
philosophy. That’s not UNIX-
like.” But our idea is that if
there’s someone out there who
has hard cash and wants to buy
some machines that have certain
features, we’re going to say, “Yes,
sir.”

REVIEW: What about compati¬
bility?

WALLACH: These extra features
always are extensions, not mod¬
ifications.

REVIEW: Besides the need for
extra features, have you come
across aspects of UNIX or C that
have caused you problems? I
would imagine, for instance,
that you're more used to work¬
ing with Fortran arrays than
with C’s pointer types.

40 UNIX REVIEW NOVEMBER 1985

WALLACH: That’s
are now doing a
compiler that will
shortly. It’s an adapl
Fortran, so we’ve dev
compiler technology

correct. We
cctorizing C
be available
ation of our
doped a new
for it.

REVIEW: So you c
looking at how peopl
then optimizing the

re actually
e use C and
t?

WALLACH: Yes, thst’s very im¬
portant, in fact. / lot of our
optimizations and a lot of our
features come frorr application
software. Rather tnan figuring
out what to do next, we let
benchmarks and user code drive
the functionality. We’re a very
market-driven company. I can
point to features in the architec¬
ture, the compiler, and the oper¬
ating system, and hen point to
pieces of major third-party soft¬
ware that stress these features.
Asynchronous I/O is in all the
finite element codes, like NAS-
TRAN and ANSY5. Striping is
useful in fluid dynamics code, as
seismic interpretatiDn is in reser¬
voir models.

It’s my opinion that the com¬
panies that succeed will be the
ones that recognize what their
customers need. No oody wants or
can afford to hire any more pro¬
grammers. Compar ies want ven¬
dors to produce tools that will
allow them to increase the pro¬
ductivity of the programmers they
already have.

I have an interesting story
about that. Among many other
optimizations, our compiler does
what is called “dead code elim¬
ination’’. That is, if a piece of
code is never execu :ed, we can de¬
tect it. Every so often, someone
will bring in a benchmark that
was written 10 years ago, and-
like everything el
patched for 10 years. We’ll run it
through our compiler and get
back the message
so, dead code n:
fellow will look at

“Line so and
emoved’’. The
that and ask,

The VAX is a very slow

"eye opener". It was

built as a minicomputer,

you know.

“What does that mean?” When
we tell him that the code was
never executed, he’ll go back and
start tracing and sooner or later
he’ll say, “I’ll be darned, you’re
right. I’ve been maintaining a
piece of code for 10 years that’s
never been executed.’’

When we first started, the only
thing we pitched was MIPS and
megaflops. Don’t get me wrong—
we still do that. But, more and
more, the buy decisions are being
made on the basis of productivity
issues.

Not to downplay the impor¬
tance of hardware, but we now
have more software people than

hardware people. That’s basically
where you have to focus. Hard¬
ware people, of course, can be
much more productive now be¬
cause of CAD. In fact, compared
to the [Data General] MV-8000,
we had less people working on the
design of this machine [at Con¬
vex]—even though it’s probably
an order of magnitude more com¬
plex than the MV-8000. That’s a
very good milestone in my book. I
should point out that in all my
years of computer development, I
have never worked with a more
talented or gifted team of people
than here at Convex. In 15
months, the designers had a pro¬
totype working with full VLSI—
running UNIX and executing code
generated by our Fortran com¬
piler.

REVIEW: Are there any aspects
of UNIX that seem to cause
problems for large-machine ar¬
chitectures? Right off hand, I
would think that heavy use of
character-at-a-time I/O would
cause a lot of context switching.

UNIX REVIEW NOVEMBER 1985 41

WALLACH INTERVIEW

WALLACH: We put a sledgeham¬

mer to that. All the character I/O
is off-board on IOPs [I/O proces¬
sors]. One of the best experiences
we had with that occurred on

a prototype. We were printing
out something when the CPU
stopped—but we didn’t know it.
We were still printing voluminous
lines and pages. That’s because
there are no device drivers in the

CPU—they’re all on IOPs. So
what happens is that when you
print on a line printer, the kernel

executing on the CPU supplies a

byte number and byte count. It
then interrupts the IOP, and

leaves it to do its own work.

That’s what an MC68000 is really
good for, as opposed to a high¬

speed processor. We can use
68000s to totally offload all disk
I/O, all tape I/O, and all character
I/O.

REVIEW: Does this make it pos¬
sible for customers, for exam¬
ple■, to write their own device
drivers without having to learn
your machine language?

WALLACH: Yeah—and what is

more, all the device drivers are

written in C. Even the diagnostics
are written in C. You can go from
disk to tape over the I/O bus
without using the CPU. The thing
is: when we built this machine,

we built a system. My experience

has taught me that, while every¬

one focuses on CPUs, they let the

I/O go by the wayside. But you’ve
go to hit it with a sledgeham¬
mer—which by the way is some¬
thing DEC hasn’t done yet. The
VAX is a very slow “eye opener’’.
It was built as a minicomputer,
you know.

REVIEW: Speaking of minicom¬
puters, has your Data Gener¬
al experience—your notoriety
with the MV-8000—been an
asset or a liability?

WALLACH: Actually, it’s been a
massive asset. Since my life is a

living resume, there’s very little I
could hide even if I wanted to.

Companies that we deal with can
figure out that we didn’t just
decide to build this machine yes¬
terday even though they don’t
actually know what we were do¬

ing. There’s a big advantage in
having a very public resume. You
know, the old joke is that when

Bobby Thompson hit his home
run in Ebbetts Field, there were
30,000 people there, but 10 years
later, if you had walked around

Brooklyn, you’d have sworn that
300,000 people had been at the

game. We’ve all seen resumes of
people we’ve worked with five

years earlier and seen things we
know aren’t true. It’s great to
have some credibility.

REVIEW: The process is called
“due diligence”, I believe,

WALLACH: That’s right. When
we were raising money, the ven¬
ture capitalists made a run on
bookstores to get copies of The
Soul of a New Machine, because
I would tell them, “Look, just read

the book. It’s fairly accurate.”

REVIEW: You seem to enjoy at¬
tacks on the big powers. Does
that belong in your resume?

WALLACH: Absolutely. In fact,
the biggest thrill for me is the
challenge. I’ve never backed
away from one yet. I’m one of
those people who shouldn’t be
kept around if I’m not motivated.
You’d be better off getting a clerk
to do the job. I think a lot of people
around me feel the same way.
We’re doing battle now with the
big powers, which for reasons
known only to themselves have
lost their focus on the scientific
market. If you’re working on

something you believe in, are
having a bit of fun, and are
making some money to boot, who
can ask for more?

REVIEW: Do you find that cer¬
tain general design decisions

tend to live a long time and that
you end up applying them over
and over?

WALLACH: In a way, yes. I once

met Gene Amdahl at a confer¬
ence. This was back when he had

just announced his 470 at Am¬
dahl Corporation. I asked him if
the machine offered IBM 1401

emulation because a lot of the

360s had it. And he responded,
“The son should not pay for the

sins of the grandfathers.” You
know, at some point we’ve got to
stop propagating mistakes.

REVIEW: You said earlier that
you had found yourself using
some of the features of an APL
machine you designed in 1971
in the Convex computer.

WALLACH: That’s right. We

used some features—some con¬
cepts—because they worked be¬
fore. You know, if a wheel is
round, it can be used by a car.
Let’s have a round wheel.

REVIEW: Is UNIX a wheel?

WALLACH: That’s a good ques¬
tion. I think it’s more a level and
fulcrum than a wheel. The best
thing that can happen to UNIX—
strictly from a business view¬
point—is for the schism between

System V and 4.2BSD to disap¬
pear. As a manufacturer, I’d love
to see it. It would be beautiful if
UNIX were brought under some
sort of ANSI control. Then, at
least, there would be a defined
document not under the control

of a single manufacturer. [The
IEEE PI003 Committee is, in
fact, at work on a UNIX standard
definition as of this writing.]

REVIEW: Is there any prece¬
dent for such independent con¬
trol of operating system stan¬
dards?

WALLACH: To my knowledge,
no. But that doesn’t mean it can’t
be done. Lack of precedents cer¬
tainly never stopped UNIX. ■

42 UNIX REVIEW NOVEMBER 1985

HANDS-ON TRAINING THAT ISN’T SECONDHAND
When you learn the L NIX™ System directly from
AT&T, you learn it fror l the people who develop it. So
all the information you get is firsthand.

For over fifteen yea rs, we’ve been teaching our peo¬
ple to use the UNIX System—which makes us the best
trained to help you le; irn.

The best training starts at your own terminal. That’s
why, at AT&T each sti dent gets the use of an individual
terminal for real ham Is-on training.

Take your pick of c ourses from our extensive cur¬
riculum. Whatever your level of expertise, from first¬
time user to system (eveloper, we
have a course that will suit your
individual needs. And all our
courses are designee. to teach you
the specific skills that will soon

©1985 AT&T Information S’

I-1
Yes, I'd like some firsthand information
on all UNIX System training courses.

ystems.

Name

have you using the UNIX System to organize and expand
your computing system for maximum efficiency.

You also get experienced instructors, evening access
to training facilities, and your choice of training centers.
We can even bring our courses to your company and hold
the training at your convenience.

And because we are continually expanding our courses
to incorporate the developments of UNIX System V
you’re assured of always getting the most up-to-date
information.

So take your training from AT&T. And discover the
power of UNIX System V—right
from the source. Ceill us today
to reserve your seat or for a
free catalog.
1-800-247-1212, Ext. 387.

Title

Company

Address

State

Call 1-800-247-1212, Ext. 387
or send coupon to:

AT&T Information Systems
P.O. Box 45038, Jacksonville, FL 32232-9974

AT&T
The right choice.

THE FINAL FRONTIER

THE FINAL FRONTIER
Continued from Page 26
the discussion below.)

• Several implementations of sub¬
routine libraries compliant
with Graphics Kernel System
are available for use on UNIX
systems.

• Many standard UNIX utilities

provide for interactive data

analysis and display (awk, plot,
hist, and S, among others).

In addition to these facilities,
several other UNIX system utili¬

ties can provide significant sup¬
port during the software develop¬

ment cycle. These include vi,
make, SCCS/RCS, and the sys¬
tem’s various document prepara¬
tion tools.

Note that UNIX, as it is com¬
monly delivered, is not able to

provide the facilities necessary
to support event-driven applica¬
tions. This does not imply that
the system can never be used in
such a capacity, but it does indi¬
cate that kernel modifications

typically are required to integrate
a UNIX-based computer into real¬

time applications.

THE FORTRAN PROBLEM

By now, it should be apparent
that the single most important
demand made by scientific appli¬
cations of an operating system is
for an optimizing Fortran compil¬

er with a robust, standard For¬
tran runtime library. The f77
compiler does not satisfy this
requirement very well. It is impor¬
tant to look into the reasons for
the deficiency, and to see how the
problem can be rectified.

UNIX achieved its first notori¬
ety as a system programming and
document preparation engine,

neither of which require much in
the way of floating point sup¬
port. C, meanwhile, is an excel¬
lent systems implementation lan¬

guage. and is the source language
of most of the UNIX system. As a

result, most work in compiler

optimization for UNIX systems is
devoted to C.

Development of compilers for
different high-level languages on
the same system can follow two

general approaches: 1) each com¬
piles the source code directly into
object code, or 2) each compiles

UNIX provides many of

the facilities necessary

to support the

computationally

intensive class of

scientific applications.

the source code to an intermedi¬
ate representation that a single¬
code generator then can use to

produce object code. In the first
case, the compiler writer can
generate object code that takes
maximum advantage of the in¬
struction set of the machine: in
the latter, the compiler writer can
generate intermediate code that
maximizes use of the intermedi¬
ate machine architecture. Despite
the portability and economies of
scale represented by the second
scenario, efficient object code
generation is dependent on the

richness of the intermediate ma¬
chine architecture.

The f77 compiler under UNIX
uses the intermediate approach
for object code generation, taking
advantage of the code generator
offered by the system’s C compil¬
er. Unfortunately, many of the
classic programming idioms em¬
ployed by Fortran programmers

are not typical of the way C
programs use machine resources.

As a result, there is a poor match

between the idioms and C’s inter¬
mediate machine architecture,
leading to non-optimal object
code for many of the most heavily
used Fortran constructs.

One possible solution to this
quandary is to convince scientists
to use a different language. Much

has been learned concerning the
use of program and data struc¬
tures since the first Fortran com¬
pilers appeared. The lack of gen¬
eral data structures and a pointer
data type often cause algorithms

that are really quite simple (when

expressed in a modern structured
language) to take on the appear¬
ance of spaghetti when expressed
in Fortran. A new language will
not succeed, though, unless it can

be shown unequivocally to out¬
perform Fortran in candidate sci¬
entific applications. Only then
will scientists be induced to ac¬
cept the startup costs of learning
a new language.

Another possible way to in¬
crease the appeal of UNIX for the

scientific community is to aban¬
don f77 and develop an optimiz¬
ing Fortran compiler that com¬
piles source code directly into
object code. The portability of the
UNIX system permits vendors to
quickly provide a proven, sophis¬
ticated, multi-programming oper¬
ating system. With an optimizing
Fortran compiler, these same
vendors would be able to increase
their penetration of the scientific
and engineering market sectors.

THE FUTURE IS NOW

The major roadblock to a more
general acceptance of UNIX in
the scientific community is the
availability of an optimizing For¬
tran compiler for each particular
hardware architecture. Despite
the revulsion purists experience
when contemplating such a proj¬
ect, several manufacturers are
starting to pursue this approach.
This is especially true among the

44 UNIX REVIEW NOVEMBER 1985

supercomputer vendors. Note

that though the Cray 2 provides a
UNIX environment, it makes use

of its own optimizing Fortran
compiler. The same applies to
Convex Computer Coi p. and oth¬
er “affordable supercomputer”

manufacturers.
Most UNIX systens provide

little of the necessary support for
event-driven applica ions. Some
companies have attempted to

provide such facilities, but only
at the expense of making ma¬
jor changes in the underlying

UNIX kernel. It is also true (at
least in the experimental physics
community) that rruch of the
data acquisition anc experimen¬

tal control perform
systems is handled

ed by such
by dedicated

microprocessor systems running

standalone operating system ker¬
nels. The communication be¬
tween these micros and other
timesharing hosts typically oc¬
curs by way of standard local area

networks. Thus, the need for
a standard operating system
to support event-driven applica¬

tions is substantially reduced.
Of course, one can always hope

that a structured successor to

Fortran will eventually emerge.

Despite the improved program¬
ming environment such a lan¬
guage would undoubtedly pro¬

vide, its performance will have to
be vastly superior to today’s For¬
tran if it is to win general accep¬
tance in the scientific communi¬

ty. In the meantime, we will

find that Fortran continues to

be heavily used in scientific ap¬

plications, and that scientists
continue to pass up UNIX sys¬
tems unless they can be shown
that UNIX satisfies their Fortran
needs in a realistic manner.

Joe Sventek is a member of the
Computer Science research staff at

Lawrence Berkeley Laboratory and
a member of the Computer Science

faculty at the University of Califor¬

nia at Berkeley. In a previous life, he
authored programs representative
of both general categories of scienti¬

fic applications—none of which
were crafted or run on UNIX
systems. ■

Copyright 1985 by Joseph S. Sventek.

3-CALC

A superior SDreadsheet on UNIX*

As powerful as Lotus 1-2-3*

large spreadsheet
many bus ness functions
complete GRAPHICS package
translates 1-2-3 models into
Q-CALC
already ported to: VAX, Callan,
Fortune, c B2, Cyb, Plexus, Codata,
Cadmus, Masscomp, Sun, etc.
Ideal for '/ARs/ISVs

Available since Jan. ’84
For more information write/call

Quality software Products
348 S. Clark Drive

Beverly Hills, CA 90211
3-659-1560

•Lotus 1-2-3 is
Corp. U^IX

a trademark of Lotus Development
is a trademark of AT&T.

eZ68020
SOFTWARE TOOLS

WE ARE PROUD TO ANNOUNCE THE BIRTH OF
THE NEWEST MEMBERS OF OUR 68000 FAMILY

... YOUR 68020 TOOLS ARE HERE!

TOOL KIT AVAILABILITY
• 68000/10/20 Assembler VAX, microVAX, 8600, Sun,

Package: Pyramid, Masscomp. IBM/PC,
- Macro Cross/Native OASYS Attached Processors for

Assembler VAX and PC, others. Runs under
- Linker and Librarian VMS. Bsd 4.2. System V, MS/DOS.
- Cross Reference Facility dozens more.
- Symbol Formatter Utility You name it...
- Object Module Translator We provide a "One-Stop Shopping

• Green Hills C 68000/10/20 service for more than 100 produc,

Optimizing Compilers running on. and/or targeting to. the
most popular 32-. 16- and 8-bit micros

• Symbolic Debuggers and operating systems

FEATURES
• Written in C: fast, accurate. • Runs native or cross.

portable. Extensive libraries.
• Supports 68000 and 68010. • Supports OASYS compilers.
• 5,000 line test suite included. • Generates PROMable output
• EXORmacs compatible. and PIC.

• Produces full listings and maps.
• Outputs S-records and Tek-Hex

formats.

• Full Floating Point support.

Over 100 Other OASYS software tools to choose from.

-a Division or xel—

60 Aberdeen Avenue, Cambridge, MA 02138 (617) 491-4180

Circle Mo. 294 on Inquiry Card Circle No. 295 on Inquiry Card

UNIX REVIEW NOVEMBER 1985 45

DATA ANALYSIS
THROUGH INTERACTION

Use of the S system to emphasize human effectiveness

by Richard A. Becker and John M. Chambers

is a language
and a system for the interactive analysis of data.

The system has applications in any field where data
is involved: financial analysis, business graphics,

quality control, engineering, and many more. It runs
under the UNIX operating system and is described

in detail by a 550-page user’s guide, S: An
Interactive Environment for Data Analysis and
Graphics, by Becker and Chambers (Wadsworth,
1984). The system is currently used by businesses,
universities, and research laboratories. Although it
is hard to be precise, we know that there are

hundreds of S sites and thousands of users.
The design goal for S, stated most broadly, is to

enable and encourage good data analysis. S
provides users with an environment that helps
them look quickly and conveniently at many
displays, summaries, and models for their data. It
allows the user to follow the kind of iterative,
exploratory path that most often leads to a thorough
analysis. By typing simple but general expressions
to the system, the user gets immediate, informative
feedback, possibly including output on a graphical
device. In addition, the system is open to change;
even though the S system has many capabilities, a

variety of mechanisms are available for extending
the system as new applications and techniques

appear.

OVERALL ORGANIZATION

An S user types expressions that describe the
analysis to be done. Some examples can be found in
Figure 1. The expressions involve a wide variety of
operators and Junctions that carry out arithmetic
and mathematical operations, statistical analyses,

graphics, data manipulation, and other computa¬
tions. Expressions also use and create datasets
containing data structures, such as vectors, arrays,
time series, and tables. Datasets are automatically
accessed by name. The S executive interactively
parses expressions and controls their evaluation.

The organization of S resembles that of an

46 UNIX REVIEW NOVEMBER 1985 Illustration by Robert Williamson

t,.,.'tfy>jfpy^.- *? Jc-tunjMii

4<* **^V
c-i5 • sc-'vP*' vi

.t> -V ; ' l v
:.■ "■= -a - • ^ a .- tt ‘ ,

> V

THE S SYSTEM

read a vector of numbers from a file, create data set mydata

mydata read("my.data.file")

mydata - mean(mydata) * subtract the mean from each value

« Given a matrix of predictor variables longley.x

« and a response variable longley.y

* get the residuals from a multiple linear regression model

r regress(longley.x.longley.y)$resid

compute the residuals

* larger than the median absolute residual

r [abs(r) > median(abs(r))]

Figure 1 — Some sample S expressions.

interactive operating system: the executive corre¬
sponds to a command interpreter, the datasets
relate to files, and the functions can be equated with
individual commands. Specific similarity to the
UNIX system organization is probably not coinci¬
dental, although it was not conscious. There are
significant differences, however. The expressions
for data analysis need a richer syntax than the
commands in an operating system, particularly for
algebraic expressions, and data for arguments and
results need more structure (commands in the UNIX
system operate largely on unstructured streams of
bytes).

S was designed in a research environment for
statisticians who continually develop new tech¬
niques, so it was essential that the system be
extensible. Some of this extension (macros and new
data structures) can be done within the interpretive
S language itself. Other extensions involve the
creation of new S functions. Facilities for extension
are intended for users; they are not restricted to
those familiar with the internal workings of S.

EXPRESSIONS: THE LANGUAGE

The user who types expressions to an applica¬
tions system wants a combination of simplicity and
flexibility. Simple requests should be straightfor¬
ward and brief. At the same time, unusual but
sensible requests should not be impossible or
unreasonably complicated. Novice and expert users
will place different emphasis on the simple or the
unusual.

In S, all user commands follow one general
syntax: everything is an expression. The expres¬
sions that are given to S may be as short or as long
as is comfortable for the user.

Expressions in S use functional and algebraic
syntax, as Figure 1 shows. For users with some
background in mathematics, science, or engineer¬

ing, this syntax is readable and familiar. Extensions
to ordinary algebraic notation introduce a few
special operators; for example, a colon is a sequence
operator such that x:y is a vector going in steps of
± 1 from x to y.

When an expression is given to S, it is evaluated.
The result may be assigned a name and thus saved
as a dataset. If the result of an expression is not as¬
signed or used inside another expression, it is
printed for the user.

Algebraic notation (prefix or infix operators, in
other words) is natural for functions with one or two
arguments. However, data analysis quickly becomes
involved with functions that have many arguments.
Functions in S can have arbitrarily many argu¬
ments that can be specified by either position or
name. Typical functions to carry out statistical or
graphical analysis will have a few arguments to say
what data is to be analyzed or plotted as well as
many optional arguments to control details. Options
are most easily supplied in the form name = value;
the options of interest can be specified in any order.
Functions return data structures that may have an
arbitrary number of named components; thus,
functions may have any number of inputs and
produce any number of outputs.

One of the most powerful functions in the S
language is represented by the subscripting opera¬
tor. Since S deals with vectors, it is natural that sub¬
scripts are also vectors. Thus:

X[1:5]

returns the first five values in x. Since it is
frequently necessary to exclude observations during
data analysis, negative subscripts specify the values
to be excluded:

x[-6]

returns x with the sixth value omitted.
Subscripting can also be used to answer data¬

base-like queries. Logical expressions used as
subscripts cause the selection of data corresponding
to TRUE values in the subscript. For example, the
query “give the names of people under 25 who make
more than $30,000“ would be expressed as:

name[age < 25 & salary > 30000]

The subscripting operation extends naturally to
multiway arrays, and in this context an empty
subscript denotes all values in that subscript
position. For a matrix y:

y[• 6:2]

48 UNIX REVIEW NOVEMBER 1985

XENIX Opornting System

Mankind searched the world over

for the multiuser operating system of the future. 1

Then IBM® chose aENIX® for the PC AT. And the future was now.

THE SANTA CRUZ OPERATION PRESENTS

ttftX HWf
AN

STARRING

SCO PRODUCTION in exclusive association with MICROSOFT CORPORATION
THE MULTIUSER, MULTITASKING PC BLOCKBUSTER “XENIX NOW!”

VISUAL SHELL • MULTISCREEN' • MICNET • THE BERKELEY ENHANCEMENTS

AND INTRODUCING C-MERGE AS THE MS-DOS DEVELOPMENT ENVIRONMENT

featuring WORlLD FAMOUS SCO TRAINING AND SUPPORT for DEALERS • END USERS • ISVs
/lnd an INTERNATIONAL CAST OF HUNDREDS OF XENIX APPLICATIONS

OEMs

INCLUDING LYRJX" AS THE UNIX/XENIX WORD PROCESSING SYSTEM

PRODUCED AND DIRECTED BY THE SANTA CRUZ OPERATION
SCREENPLAY ADAPTED BY THE SANTA CRUZ OPERATION FROM ORIGINAL STORIES BY MICROSOFT AND AT&T

IN BREATHTAKING SELECTABLE COLOR

NOMINATED FOR BEST DOCUMENTATION! ★ BEST SUPPORT! ★ BEST TRAINING!
BEST ELECTRONIC MAIL AND NETWORKING! ★ MOST APPLICATIONS!

★ MOST COMPLETE UNIX SYSTEM!

SCO
THE SANTA CRUZ OPER; TION

RELEASED FOR MOST POPULAR PERSONAL COMPUTERS.
APPLICATIONS ALSO AVAILABLE: LYRIX, MULTIPLAN®, INFORMIX®,

LEVEL II COBOL"*, 3270 MAINFRAME COMMUNICATIONS.

(408)425-7222
TWX: 910-598-4510 SCO SACZ

Circle No. 263 on Inquiry Card

M MULTIUSER OP ERATION SUGGESTED

XENIX WILL TURN YOUR P(INTO A REAL COMPUTER

©MCMLXXXIV The Santa Cruz Operation. Inc.
The Santa Cruz Operation, Inc., 500 Chestnut Street, P.O. Box 1900, Santa Cruz. CA 95061 (408) 425-7222

UNIX is a trademark of AT&T Bell Laboratories • Lyrix and Multiscreen are trademarks of The Santa Cruz Operation, Inc. • IBM is a
registered trademark of International Business Machines Corporation • XENIX and Multiplan are registered trademarks of Microsoft
Corporation • Informix is a registered trademark of Relational Database Systems, Inc. • LEVEL II COBOL is a trademark of Micro Focus, Ltd.

THE S SYSTEM

Specific similarity to the UNIX

system organization is probably not

coincidental, although it was not

conscious.

returns all rows of columns six through two. As this
example illustrates, the subscript operator can also
permute data values (here reordering columns six
through two).

The function order generates subscripts corre¬
sponding to a sorted version of its argument. Thus:

x[order(x)]

is equivalent to:

sort(x)

Using order also makes it simple to do passive
sorting:

name[order(salary)]

lists names in increasing order of salaries.
The print function, implicitly invoked whenever

a result is not assigned, represents numerical
results to the appropriate number of decimal places
and can neatly lay out matrices, time series,
multiway tables, and character data.

The function apply is able to invoke another
function repeatedly on portions of data structures.
In its simplest form, apply invokes a function on
each of the rows or columns of a matrix. Thus:

apply(y. 1. "mean")

invokes mean once on each row (dimension 1) of the
matrix y and returns the vector of row means. With
other choices for its second argument, apply can
deal with slices of multiway arrays. Functions can
also be applied over hierarchical data structures
and ragged arrays.

DATA STRUCTURES AND DATA MANAGEMENT

Datasets in S contain self-describing, hierarchi¬
cal (list-like) data structures. Datasets are created
automatically by assignment expressions; no user

control of storage is required. The elementary data
structures are vectors of numbers, logical values, or
character strings:

> response
1.01 .97 3.1 7.21

> response >2.5
F F T T

> species.name
"Setosa" "Virginica" "Versicolor"

(Here the “>” is the S prompt for an expression).
The numeric data modes are “real” and “inte¬

ger”, but for the most part the distinction is
unimportant to the user. In S, the value of the
expression “3/2” is 1.5, even though in many
programming languages integer arithmetic would
produce an integer result of 1. A special operator is
provided for integer division when it is needed.

There is a special value, NA (not available), that
can be used to signify missing data. Any arithmetic
operations on NAs produce NAs.

General data structures consist of any number of
components, each component being either a vector
or another general data structure. Each component
has a component name; syntactically, the compo¬
nent named Label of a structure z is denoted
zSLabel.

We designed S so that most users are unaware of
the details of data structures, but also so that
structures can be defined and manipulated easily to
handle new analyses. Simplicity for the user is
obtained because all functions that deal with a
given type of data structure (for example, matrices,
time series, or tree structures from clustering)
recognize the structure type by looking for compo¬
nents with certain specific names. Functions that
produce such structures as their value simply
return structures with the appropriately named
components. For example, a multiway array is
defined as a structure with two vector components:
one named Data containing the data values for the
array (listed column-by-column), and one named
Dim containing the extents of the array on each
dimension. A 2 by 3 matrix, x, with data value 2i+j
in the [i.j] position corresponds to the following list
representation:

("x" STR
("Dim" INT 2 3)
("Data" REAL 3 5 4 6 5 7)

)

Certain functions make use of a list representation
of S data structures to enable structures, or entire

50 UNIX REVIEW NOVEMBER 1985

TANDY...
Clearly Superior ''
The Tandy (3000 lets your office balance the books,
track sales and write memos... simultaneously.

costing, and sales analysis.

The Tandy 6000 comes with 512K of
memory, XENIX 3.0 operating sys¬
tem and a 15-megabyte hard disk
drive (26-6022, $5499).

Discover how your business can
benefit from a Tandy 6000 multi-user] office system. Drop by your

local Radio Shack Computer
Center for a free demonstra¬
tion. Ask about our leasing
plan, too.

time and effort. Your accounting can
be processed in one office, word pro¬
cessing in another, and data base man¬
agement in a third office.

The Tandy 6000 can also help with
other departmental functions, like
financial planning, inventory, job

For many companies, it’s hard to
justify the cost of a separate computer
for each employee. That’s why we de¬
signed the efficient Tandy 6000 multi¬
user computer.

The Tandy 6000 system allows
three people to simultaneously access
programs and data, and you
can expand with up to six
users at any time.

With a single Tandy 6000
and printer, you can save L:

TANDY
6000

Available at ovei 1200
Radio Shack Computer Centers and at

participating Radio Shack stores and dealers.

Radio /hack
COMPUTER CENTERS

A DIVISION OF TANDY CORPORATION

Prices apply at Radio Shack Computer Centers and participating stores and deal¬
ers. Display terminals sold separately. XENIX/TM Microsoft Corp.

THE S SYSTEM

The user who types expressions to

an applications system wants a

combination of simplicity and

flexibility.

databases, to be written to files in character form
and subsequently read back in.

The ordinary user does not see this structure,
however; x just appears to be a matrix. When a
matrix or array is printed, it is laid out conventional¬
ly with no explicit reference to the components of
the structure:

> x

Array:
2 by 3

Ml [.2] [.3]
[1.] 3 4 5
[2.] 567

Matrices and arrays are created and manipulated
by a large number of S functions. Data structures
such as arrays or time series are so widely
recognized that they are considered to be built into
the language. Most of the basic functions, such as
arithmetic, logic, printing, and plotting, include
some special facilities for treating these structures
sensibly. For example, the result of adding together
two time series is a time series on the intersection of
the two time domains.

A broader special class consists of vector struc¬
tures which are data structures that can act like
vectors but have special structure in addition.
Vector structures can be used in arithmetic and, in
general, can act as a vector argument to any S
function. Arrays and time series are examples of
vector structures, but the class is open-ended.
Internally, any structure with a vector component
named Data is considered a vector structure. The
Data component is the part that acts like a vector
when necessary. Functions that operate element-
by-element on a vector structure change the data
values but leave the other components unaltered. If
x is the matrix above, sin(x) produces a 2 by 3 ma¬
trix with data sin(3), and so forth, while x<4 is a
matrix of logical values.

52 UNIX REVIEW NOVEMBER 1985

Functions that rearrange the order of elements,
on the other hand, throw away the structure and
leave just the data: sort(x) sorts the data values in
the matrix but its result is a simple vector. Since the
original design of S, vector structures have been
added to represent such structures as distance
measures, categorical variables, and multiway
tables. These structures can be used as vectors
throughout the language, with no modification of
the various S functions involved.

THE EXECUTIVE

The S executive performs tasks roughly compara¬
ble to an operating system command interpreter
(such as the UNIX system shell). It controls most
interactions with the user, parses user expressions,
schedules the execution of various functions, and
handles interrupts and error recovery.

User expressions are accepted by a parser built
using the yacc compiler-compiler with a customized
lexical analyzer.

The process by which the executive invokes an S
function is crucially system dependent. S consists of
a large collection of functions (currently around
300). Furthermore, users must be free to write and
use their own functions. The facilities of the
operating system running S determine how such a
collection can be maintained and used in a
reasonably efficient way. Operating system con¬
straints have forced us to use several different
implementation strategies. For the original version
of S, on a Honeywell computer with a relatively
primitive operating system (no virtual memory or
process control), we wrote our own dynamic loader.
Each S function was an overlay, read in by the
executive; control was passed by a standardized
transfer vector.

When we first moved S to PDP-1 Is running the
UNIX system, the major constraint was the 16-bit
program address space. For this environment, we
implemented each S function as an independent
program. The executive used the fork and exec
operations to start up new processes, and they
shared data by means of a common file and noted
completion by means of signals.

The current implementation on 32-bit hardware
exploits the larger address space to incorporate
some or all of the S functions as part of the program
containing the executive.

For our goals of flexibility and extensibility, it is
essential that these changes in implementation
affect only the executive, not the source code for
individual functions. Even in the executive, only a
relatively small fraction of the code is system-
dependent. This code, however, is more crucial to

Name the computer
that’s so modular and
expandable it lets you
upgrade from 16-bit to
32-bit processing...

Expand from .5 to 7 Mbytes
of memory...
Or go from monochrome display
to high-resolution color graphics...

All in a snap

, w ■'

Introducing the HP 9000 Series 300

The computer that
Starting right now, HP is going to change your thinking
on the ways that computers can change. Because now, there’s
a computer system so easy-to-configure that it meets
today’s application requirements quickly and cost-effectively,
and so modular and expandable that it embraces future
application needs as well. Whatever the job at hand —
advanced CAD and measurement automation, or word
processing, spread sheets, and database management —
the new HP 9000 Series 300 is equal to the challenge.

Your pick of processing power.
The Series 300 offers you the appropriate processing
power for the job, running your choice of two Motorola
microprocessors: the 68010 16/32 bit and the 68020 32 bit.
You can start with the 68010 and easily upgrade to the
68020 when more processing power is required. Just as
important, you have complete object code compatibility
across the product line. So when you change processors,
there’s no need to recompile.

Changing CPUs in the HP 9000 Series 300 is a snap. You simply

plug in a new card set and, with object code compatibility, you shift

from a 68010 running at 10 MHz to a 68020 running at 16.6 MHz.

Adding peripherals is easy.
The Series 300 has the built-in interfaces to handle
HP’s large, fully compatible family of peripherals. There
are many compatible monitors of varying resolution, too,
so you can go from 12-inch monochromatic display all
the way to high-speed, high-resolution color graphics.

i »

I

loves changes
In addition, there are a n
to choose from: input and
printers, and more.

umber of HP peripherals for you
mass storage devices, plotters,

hel

Productive pro]
You also have a complet^
tools to work with, to
your application. For in
BASIC, as well as HP-UX
System V UNIX™ ope
supports industry standa:
FORTRAN 77, Pascal,

grar^iming language options.
set of programming language

p you better meet the needs of
stance, the Series 300 runs HP

— HP’s robust version of AT&T’s
ating system. And HP-UX

programming languages, too —
C.

id i
and <

Link entire systems
The Series 300 is designed
Your initial application
system. But the Series 3
a sophisticated 100-node
Ethernet™. With LAN,
with the Series 200 and
family, plus the popular

, not just users.
to be linked with other systems,

ay call for a simple, single-user
has what it takes to grow into

LAN based on IEEE 802.3 or
the Series 300 can share data
500 computers in the HP 9000
HP 1000 and 3000 family.

m:
CO

Consistent HP quality.
With the HP Series 300, you can count on cost of
maintenance below 4 percent, the result of exceptional
HP product quality, uniformly maintained with exacting
tests in temperature, shock, humidity, altitude, and many
others. Couple this with our complete service and support
package and you have still more reasons to go with HP.

Call us today!
Choose the system that will change to meet the applica¬
tion requirements of you, your users, and your customers
today and tomorrow. Call your local HP sales office listed
in the white pages. Or call 1-800-522-FAST (in Colorado,
223-9717 collect) for the number of the sales office
nearest you.

Now, get data on-line, 24 hours a day!
For immediate information, use your computer and
modem and dial 1-800-367-7646 (1200 baud, 7 bits even
parity, 1 stop bit). In Colorado call 1-800-523-1724.

ha HEWLETT
r PACKARD

THE S SYSTEM

Users often react to plots by finding

the unexpected and using this new

information to shape subsequent

analysis.

the reliability and efficiency of the system than its
size might suggest—adapting the control of such a
large-application software system to the features of
a non-UNIX system is relatively difficult.

GRAPHICS

Data analysts use plots iteratively as an intimate
part of their study of data. The unique role of plots
comes from their information content: no other
form of output conveys so much information so
quickly. Users often react to plots by finding the
unexpected and using this new information to
shape subsequent analysis. A variety of graphical
techniques for data analysis are presented in
Graphical Methods jor Data Analysis, by Cham¬
bers, Cleveland, Kleiner, and Tukey (Wadsworth,
1983).

S emphasizes interactive graphics as one of the
most important tools in data analysis. Graphics
functions in S provide the simple displays that are
predominant in statistical graphics—most notably

the scatter plot—in a flexible and easy-to-use form.
For example:

plot(x.y) ^scatter plot

qqnorm(x) ^Normal probability plots

The general data structures and expressions in S
help to provide graphical output from a variety of
sources. Many analyses produce results that define
a scatter plot: for example, a probability plot shows
an ordered set of data plotted against corresponding
quantiles of a probability distribution. Deviations
from a straight-line pattern help assess distribu¬
tional assumptions. Rather than duplicating scat¬
ter-plot software for each such plot, S functions
return as their value a plotting data structure,
which is passed automatically to the plot function
to be displayed. The expression:

qqnorm(mydata)

produces a probability plot of mydata against
quantiles from the standard normal distribution.
Internally, qqnorm only generates the plotting data
structure and then invokes the scatter-plot func¬
tion; qqnorm needs to know nothing about plotting.
The data structure consists of two vector compo¬
nents for the x and y coordinates of the points to
plot. Once the probability plot is seen as a data
structure, it is straightforward to use this structure
for further analysis—by fitting some suitable line to
the points in the plot, for example.

The graphical functions are not locked into
specific devices because both the user-typed expres¬
sion and the underlying algorithms are written
independently of specific graphic devices. Actual
graphical output is produced through a device
driver that converts the graphics output, at a
relatively low level, into commands for a particular
device (see Figure 2). The commands are passed
from the function to the device driver by means of a
set of pipes. Drivers exist for ordinary printing
terminals and a range of interactive plotting
terminals. A driver is written by implementing
routines to carry out a specified set of graphic
primitives (such as “draw a line” or “plot a
character”), and by providing a definition of the
device in terms of basic graphic parameters (for
example, the device coordinate system or raster
size). Incorporating a new device typically takes a
few days or less; the process is straightforward
enough that users can write their own device drivers
by following the instructions in Extending the S
System, by Becker and Chambers (Wadsworth,
1985). Figure 2 — Operation of device-independent graphics.

56 UNIX REVIEW NOVEMBER 1985

m Only Sperry can
following four sta

Our PC runs th^
system, as well as

Our 4 new mic:
run the UNIX sys

Our new minic
the UNIX system.

Our Series 1100
run the UNIX sys

All of which me
a great deal we can

ake the
tlements.

XENIX™
MS-DOS™

rbcomputers
trni.
qmputer runs

mainframes
tfem.
ans there is

do for you.

For instance, our family of
computers based on UNIX
systems has incredible trans¬
portability for all your software.

And being able to accom¬
modate from two to hundreds
of users, it’s impossible to out¬
grow our hardware.

Of course, this linking of all
your computer systems can add
measurably to your productivity.

And a fast way to find out

more is to get a copy of our
Sperry Information kit. For
yours, or to arrange a demon¬
stration at one of our
Productivity Centers, call
1-800-547-8362 (ext. 60).
*UN1X is a trademark of AT&T Bell Laboratories
XENIX and MS-DOS are trademarks of Microsoft
Corporation
©Sperry Corporation 1985.

^SPER^Y
Circle No. 270 on Inquiry Card

Introducing an idea
that makes obsolescence obsolete.

The UNIX operating system
from PC to mainframe.

Resellers: Cal Speny at1-800-547-8362, ext 125 to carry the only complete UNIX PC-to-mainframe line.

THE S SYSTEM

S was designed using the model of a

language operating on complete

datasets, interactively, in a

nonsequential manner.

TOOLS: THE OPERATING SYSTEM

The complete S system contains about 6000 lines
of interface language, 35,000 lines of algorithm
language and 9000 lines of C code. Development
and maintenance of S by the two of us requires
efficient use of time. Our experience is that three as¬
pects of the design particularly affect human
efficiency: the languages in which programming is
done, the tools for maintaining the application
system, and the operating system interface.

We developed our own interface language and
algorithm language. This may have accounted for
perhaps 10 to 15 percent of our total effort, but this
development has been cost-effective. Interface
routines describe arguments to S functions, check
for errors in arguments, allocate space for data
structures, call computational routines, and return
results. If interface routines were written directly in
a general language like Fortran, they would be
much more complicated and error-prone, and all
but the most sophisticated users would find it
impossible to write their own S functions. During
compilation, an interface routine typically expands
into a much larger Fortran routine (representing an
order of magnitude more lines of source code). Much
of this expansion reflects inherent clumsiness in
using Fortran to express the argument processing,
dynamic storage management, and result genera¬
tion encompassed in an S function. At the same
time, the use of Fortran as an intermediate language
is important. We could not re-implement all the
basic computational algorithms previously written
in Fortran.

The use of software tools is essential for creating
and maintaining a system such as S. Compiler-
compilers, macroprocessors, and more specialized
tools ease the burden of system development.
During compilation, the interface language goes
through our own simple compiler, two passes of the
M4 macroprocessor, RATFOR, and Fortran. Obvi¬
ously, we are not trying to optimize compilation
time. This multistep process, however, does enable

us to modify individual steps as our needs change.
Other tools are used to provide specific utilities

for S developers. The make system for maintaining
programs is used to generate the S executive and the
individual functions.

For tools to be useful in large applications
systems, they themselves should be easily adapt¬
able. For example, our use of make is highly
specialized. The interface routines and the support
programs, whether based on RATFOR or C, all take
advantage of special S facilities. We therefore
replace and extend make’s built-in rules for
compiling to include these special features. The
result is a customized tool, itself built from a
number of tools.

The ease with which tools are put together is also
a function of the operating system environment.
The UNIX environment is convenient for developing
a system such as S, both because of specific
facilities and because the operating system tries not
to be unnecessarily restrictive. Facilities such as
pipes and a flexible command interpreter make the
creation of customized tools much easier. The
absence of complex rules about file formats and
interprocess protocols, on the other hand, has
meant that our implementation has had fewer
barriers to scale than it might have otherwise.

The dependence of the current version of S on its
operating system environment involves both the
internal dependencies and the use of operating
system features in the tools. The dependencies on
computer hardware, such as machine accuracy,
are relatively easy to handle. The large majority of S
code passes through Fortran during compilation.
Non-portable features, such as the choice of special
characters and machine precision, are isolated in
the macroprocessing phase and kept in a single file.

The use of Fortran as an intermediate language
and the parametrization of machine-dependencies
make S source code quite portable. On the other
hand, implementing and using a system like S
benefits from a good general computing environ¬
ment. The UNIX system has allowed us to combine
and modify tools to put together S. In a more
restrictive system, we would have been obliged to
provide more of the support environment ourselves.
Perhaps most importantly, the UNIX system is being
used on a variety of new computer systems, and
when that is done, S goes along for free. Because of
this form of portability, S currently runs on
hardware ranging in size from AT&T’s UNIX PC to
large IBM mainframes.

HISTORY

Work on S began at Bell Laboratories in 1976 and

58 UNIX REVIEW NOVEMBER 1985

S represents an approach to

computing that emphasizes the

effectiveness cf the human as the

most important design criterion.

an initial implementation on a large Honeywell
mainframe system was in use late that year. (This
was the machine left over after Bell Laboratories
dropped out of the Mul :ics project.) Starting in 1978,
a version of S was developed for the UNIX system on
an Interdata compute-just after the UNIX Seventh
Edition port was accjmplished on that machine.
Since 1981, the UNIX-based version of S has been
distributed outside Bell Laboratories by AT&T.

When the design of S began, a group of us at Bell
Laboratories conside-ed the statistical software
that existed at the time in terms of our goal of good
data analysis, particjlarly in an interactive, ex¬
ploratory environment. We could ascertain three
main approaches to daing statistics on a computer:
programming in a conventional language, usually
Fortran (this had been our own previous approach):
mainframe statistical packages such as BMD, SAS,
and SPSS; and a few interactive languages, notably
APL. We recognized the need for better use of
human resources than was possible when it was
necessary for individuals to develop their own
Fortran applications, but we found problems with
the existing alternatives to Fortran.

Statistical packages arose during the 1960s and
were closely modeled on the idea of sequentially
processing a series oi records on punched cards or
magnetic tape. This model has had several bad
influences. Good dati analysis is highly iterative,
responding to impo-tant facts observed in the
analysis itself. Picturing analysis as processing a
sequence of records through a limited set of
statistical commands discourages this freewheeling
interaction with the data. In particular, interactive
use of the statistical packages was either not
available or consisted largely of the ability to set up
the card deck and run it from a terminal. S, on the
other hand, was designed using the model of a
language operating on complete datasets, interac¬
tively, in a nonsequential manner. A number of
modern statistical techniques, like robust estima¬
tion. cannot easily be expressed in the sequential

form, and are therefore hard to incorporate in some
of the packages.

Another result of the batch approach was the
tendency to "shotgun” output, printing all the
summaries likely ever to be relevant from a
particular model or process. Instead, S tries to
provide a wide variety of displays, particularly
graphical, that can be used interactively to see
summaries relevant to a particular user. Graphics,
like interaction, was not part of the original design
of the mainframe packages. Since 1976, many of
these packages have added graphical facilities, but
the graphics tend to be viewed as “reports” rather
than as integral parts of the analysis. For example,
most of the graphics add-ons do not include graphic
input, which in our opinion is essential for
identifying important features observed in the plots.

The APL language, while not designed for
statistical computing, offered a very different (and,
in many ways, more attractive) approach. It was
intended for interactive use, with users typing
expressions that operated on whole datasets and
produced immediate output at the terminal. Users
can extend the language by defining interpreted

functions that can then be used in the same way
that primitive APL operators are. These are all
features that contribute to APL’s usefulness for data
analysis, and thus have been incorporated into S.
The consistency and functionality of APL’s opera¬
tors are also present in S; in S, however, such
operations are normally carried out by functions
rather than by operators. The main problems with
APL are its syntax, its data structure, and its
isolation from other languages.

S represents an approach to computing that
emphasizes the effectiveness of the human as the
most important design criterion, as shown by the
emphasis on friendly interactive access to comput¬
ing, information hiding, and on greater flexibility
through delayed binding. Our philosophy is that the
effectiveness of the human is the most important
criterion for the design of any computer system.

EXPERIENCE AND EVOLUTION

A significant contribution to the evolution of S
has come from user activities and experience. By
far, the majority of our users are not professional
statisticians. Instead, they are professionals in
other areas who have a need for data analysis,
graphics, or other S facilities to enhance their own
work. In a number of cases, their specialized use of S.
has led them to develop, in effect, unique systems
for their own specific user communities. This is
usually done by creating a set of S macros to

Continued to Page 100

UNIX REVIEW NOVEMBER 1985 59

ilU

vV1
9l1

UNIX IN REAL TIME
What it takes to make the grade

by Clement T. Cole and John Sundman

W

tii

As UNIX has moved from the
orld of computer science re¬

search into The Real World, its
character has been altered. This

*ticle explores some of the modi-
^ations that have been made to

support “real-time” processing
id looks at a number of the

demands that real-time applica-

e\
th;

ms make of the operating sys¬
tem.

Real-time operating systems
cdn be described in terms of
seven requirements. It is our
contention that UNIX, suitably
modified, can fill all seven. Before
listing these requirements, how-

er, it’s important to understand
at they stem from applica¬

tions—which, unlike UNIX, have
standard definition. (Admit-

dly, the /usr/group UNIX In-
dace Standard published in
arch, 1984, has its detractors,

but the IEEE PI003 Portable
Operating System Environment

irking Group has started work
a better definition.)

Because real-time applications
la<fck a standard definition, this

no
te
te
M

W
or

■v ■

article makes a distinction be¬
tween a real-time monitor and
a real-time operating system.
Even though our distinction is
not rigorous, we feel it is impor¬
tant to make if we are to avoid
comparing apples with oranges.
To this end, we have restricted
our comments to applications
that require an operating system.
We make no claims for the suit¬
ability of UNIX as a real-time
monitor.

The class of real-time applica¬
tions that interests us includes
the problems that traditionally
have been managed by systems
like Digital Equipment Corpora¬
tion’s RSX and VMS; Data Gen¬
eral’s RDOS, MP/AOS, and AOS/
RT-32; and Hewlett-Packard’s
MPE. Our list of seven require¬
ments comes from an analysis
of the traits common to these
and other similar systems. This
seems fair since real-time appli¬
cations and operating systems
have been around for a long
time—longer, certainly, than the
UNIX system has. Thus, when we

REAL-TIME UNIX

state that a real-time operating
system needs multiple process¬
es and quick communications
among them, we are simply fol¬
lowing a long tradition—not de¬
fining the problem in terms of a
ready solution. We make this
point because UNIX has gotten
something of a “bum rap” with
regard to its suitability for real¬
time applications.

For example, in a recent issue
of Computer Design, three real¬
time experts—Bill Allen, Collin
Hunter, and Bernard Mushin-
sky—flatly state “Real Time
Unix is not a good idea.”[13] The
accusation is often made that
UNIX devotees see UNIX as the
solution to every problem, and
describe these problems in terms
of solutions already built into
UNIX. This simply is not the case.

WHAT IS A
REAL-TIME SYSTEM?

Let’s look at what a real-time
system is. There are two parts to
consider: a controlled system
and a controlling system. The
“controlled system” consists of
hardware—such as the sort one
might use for a process in a
factory or an experiment in a
laboratory. The “controlling sys¬
tem” refers to the computing
resources—hardware and soft¬
ware—that accept and analyze
data from the controlled system.
The controlling system some¬
times produces data to modify the
controlled system.

A real-time operating system,
like Digital’s VMS or MASS-
COMP’s Real Time UNIX (RTU) is
the nucleus of the software used
by a controlling system. As such,
the operating system must con¬
tain and present to application
programs the primitives needed
to build real-time applications.
An application must be able to
instantaneously record, analyze,
and respond to the raw data and
events produced by the control-

UNIX has gotten

something of a "bum

rap" with regard to Its

suitability for real-time

applications.

ling system [2]. Note that “instan¬
taneous” is a relative term and
that applications described as
such must be controlled (more
about this later).

Requirements Jor a Real-
Time Operating System. Real¬
time operating systems can be
described in terms of seven fea¬
tures:

1) Support for the creation, dele¬
tion, and scheduling of multi¬
ple “processes” or indepen¬
dent tasks, each of which
monitor or control some por¬
tion of a total application.

2) Communication “channels”
between processes to allow
small amounts of data to be
sent or received, thus allowing
two or more related processes
to share low-volume informa¬
tion.

3) Data “pooling” or sharing, al¬
lowing two or more processes
to pass and examine large
amounts of data efficiently.

4) Synchronization between pro¬
cesses in an application.

5) The ability to quickly, reliably,
and predictably maintain large
amounts of data in long-term
backing store.

6) Synchronization with external
events.

7) “Instantaneous” and predict¬

able response to external
events.

Every real-time system em¬
bodies these features to a greater
or lesser extent. This article at¬
tempts to show that standard
UNIX, with only minor changes,
embodies the first five features on
the list. With some other signifi¬
cant changes—which already
have been made in specific in¬
stances—the remaining two fea¬
tures can also be provided.

A Word on Monitors. A real¬
time monitor is a small, generally
PROM-based set of subroutines
dedicated to a unique, limited
task (an “application” program).
Monitors, real-time or otherwise,
are most often shipped with a
“single-board computer” so as to
allow an application program to
operate the module as soon as
power is applied. Often, an appli¬
cations programmer will not re¬
place a monitor, but instead use it
as a starting point, making sub¬
routine or “monitor calls” to it in
order to obtain additional func¬
tionality. Monitors thus can limit
the amount of new code that must
be written.

Note, for example, a “smart”
Ethernet controller such as the
Excelan EXOS-201 or the Com¬
munications Machinery ENP-30.
Each in itself is a real-time sys¬
tem containing an independent
16-bit processor, memory, and
I/O hardware. Both can serve
as a controller for the Ethernet
and host interface hardware. A
small, on-board real-time moni¬
tor schedules each portion of the
networking task, responds asyn¬
chronously to external events
(such as the receipt of a packet
from the wire), recovers from
errors, and performs the normal
operations of setting up and
breaking down network connec¬
tions. The controller must per¬
form all of these tasks in real
time.

A monitor has no concept of

62 UNIX REVIEW NOVEMBER 1985

long-term data retention to a
backing store. Neither does it
concern itself with providing a
user interface by way of a com¬
mand executive, or with running
a number of independent pro¬
grams invoked by system “com¬
mands”. A monitor houses on a
single embedded task that can be
performed simply and efficient¬
ly—like the management of an
Ethernet controller.

We place “custom real-time
operating systems’ , such as
Hunter and Ready’s VRTX or
Industrial Programming’s MTOS,
in the class of PROM-resident
monitors since they don’t offer all
the services of full operating sys¬
tems. Embedded systems (Ether¬
net controllers and the like) are
often best implemented with
dedicated monitors. Such moni¬
tors do not have to provide a file
system, a command system, or
any of the other features one
would expect in a full operating
system.

The key difference between a
full operating system and a moni¬
tor is scale. As Jim Ready (of
Hunter and Ready) has been
quick to note, many UNIX ven¬
dors embed real-time monitors
deep inside their smart control¬
lers [7). If you define a real-time
application as one that can re¬
spond to raw data and events, you
might include monitors. But real¬
time applications £s we define
them must accommodate a wide
range of activities (often involving
several processors), and must be
adaptable to large-scale changes,
even while analyzing and record¬
ing data. This is why we have
excluded monitors irom our dis¬
cussion. The services they are
designed to provide simply do not
compare to the wealth of services
supplied by UNIX.

A Data General MV-8000,
Hewlett-Packard 3000, MASS-
COMP MC-5500, cr DEC VAX
system could be us*d for analog

Originally, UNIX was

not written as a "real-

time" system but as a

"timeshared" system

for interactive use.

data acquisition and encapsula¬
tion. An MC-5500 running RTU,
for example, can gather up to one
million 16-bit samples per second
from a controlled system, record¬
ing the data in a disk file. As the
data is gathered, the system can
perform sophisticated analysis.
For instance, a user might push
data through an array processor
or floating point unit with com¬
plex arithmetic subroutines such
as fast Fourier transforms (FFTs)
and linear regressions. The inter¬
preted result then could be dis¬
played in real time on a bit¬
mapped graphics display screen.
Real-time monitors simply are
not designed to provide this scale
of service.

STANDARD UNIX
AND REALTIME

What is Standard UNIX? For
the purposes of this discussion,
let us assume that “standard
UNIX” means the system call
interface as defined by the March,
1984, /usr/group UNIX Standard.
We will cite any UNIX features not
defined by the standard.

The Real-Time Issue. Origin¬
ally, UNIX was not written as a
“real-time” system (9) but as a
“timeshared” system for interac¬
tive use. This timesharing heri¬
tage is responsible for much of
the denigration that real-time
UNIX systems suffer today. But if

one looks at a “timeshared” sys¬
tem as a “real-time” system,
where “instantaneous” response
is measured in seconds rather
than milliseconds, one might find
that UNIX actually has most of
the seven features required by
real-time data-acquisition ap¬
plications.

Creating, Deleting, and Sched¬
uling Processes. The support
UNIX offers for process creation,
deletion, and scheduling is em¬
bodied in four simple yet powerful
system calls:

• fork(2) creates new processes.

• exec(2) starts the execution of a
different program image.

• wait(2) keeps one process on
hold until another process is
completed.

• exit(2) terminates a process.

The UNIX kernel schedules
which process may execute at any
instant; this function is funda¬
mental to system operation. The
code that handles it is called the
scheduler. Although the standard
UNIX scheduler is tuned for time¬
sharing use, it provides one con¬
cession for real-time applica¬
tions—a ’’priority value” that
can be manipulated with the nice

command.
Of the processes in primary

memory, some wait for an event
(for example, I/O or the termina¬
tion of a child process), while
others stand ready to continue
execution at any time. Associated
with each process is a priority
that determines the order in
which processes will run.

The priority of all operating
system processes—including the
operating system portion of us¬
er processes (system calls)—is
greater than that of user jobs.
Among these system tasks, disk
I/O has a high priority, terminal
I/O a low priority, and time-of-day
events an even lower priority.

UNIX REVIEW NOVEMBER 1985 63

REAL-TIME UNIX

User-process priorities are as¬
signed by an algorithm that
weighs the amount of compute
time consumed by a process
against the amount of real time
that’s used. A process that has
devoured a lot of compute time in
the last real-time unit is assigned
a low user priority. Because inter¬
active processes are character¬
ized by low ratios of compute-to-
real time, interactive response is
maintained without special ar¬
rangements.

The scheduler simply selects
the process with the highest pri¬
ority, thus picking system pro¬
cesses over user processes. The
compute-to-real-time ratio is up¬
dated every second. Based on
these results, high-priority pro¬
cesses are allowed to preempt
low-priority processes—even if
the low-priority processes already
are running. Further, the sched¬
uling algorithm has a negative
feedback character: if a process
uses its high priority to monopo¬
lize computing resources, its pri¬
ority will drop. Similarly, if a low-
priority process is ignored for a
long time, its priority will rise.

Although the priority of a pro¬
cess is calculated by internal
operating system algorithms, the
user or programmer can make a
contribution to this calculation
by assigning a nice value to a
process. This value is set by using
the nice(l) command, which in
turn uses the nice(2) system call.
The default nice value for all
processes is 0. Conventionally,
this value is allowed to range
between 0 and 19. The higher it
is, the lower the resulting priority.
However, nice values alone are
not sufficient to guarantee static
priority scheduling.

Communications Channels.
The pipe, a simple, elegant chan¬
nel for communication between
two processes, is one of the most
celebrated innovations offered by
UNIX. The pipe(2) system call

Modifications have

been made by

countless unsung

heroes in a myriad of

UNIX installations.

offers a method for creating
a simple read/write communica¬
tions channel between two pro¬
cesses. The Jifo (or named pipe),
operates in a similar manner, but
does not require that the two
communicating processes be part
of the same process family tree.
These two primitives allow two or
more processes to send low-band¬
width information back and forth
by read and write operations on
the pipe.

Newer implementations of the
UNIX system contain communi¬
cations primitives that supple¬
ment pipes. The System V IPC
and the 4.2BSD socket mecha¬
nisms are instances. These are
usually used for networking, so
they are not discussed at length
here. But they are, of course,
available for real-time program¬
ming.

Data Pooling. Data pooling
allows large amounts of data to be
shared between or among pro¬
cesses. This can be accomplished
by opening a file for access by a
number of processes, and also
by overlapping (sharing) the da¬
ta segments (memory address
ranges) of different processes.
The shared memory technique is
adaptable for real-time use.

Shared memory has been of¬
fered in a number of schemes. In
System V, AT&T provides for it
with the shmop(2) primitive. This

mechanism allows large amounts
of data to be accessed by more
than one process at a time.

Synchronization Between Pro¬
cesses. The signal is the tradi¬
tional UNIX tool for synchroniz¬
ing activities in two processes; it
allows one process to notify an¬
other of an event. The signal(2)
call provides a software interrupt
mechanism analogous to a hard¬
ware interrupt. Any process can
send one or more signals to any
other process so long as the
sending process knows the pro¬
cess id of the destination process
[9]. A process that expects to
receive a signal should include a
routine (signal handler) that can
be called whenever a signal ar¬
rives. Certain signals, such as the
alarm(2) timer signal, can be sent
by the system itself.

The semop(2) (semaphore op¬
eration) primitives of AT&T’s re¬
leases offer another scheme for
synchronizing processes. These
primitives provide a mutual ex¬
clusion mechanism by using a
semaphore operation between
multiple processes, and are often
used in conjunction with the
shared memory (shmop(2)) calls.
The semop(2) calls enable coordi¬
nation between processes that
may attempt to write into the
common data pool at the same
time.

Reliable Data Transfer to
Backing Store. Reliable data
transfer to long-term backing
store is usually implemented as a
file system on disk. The celebrat¬
ed UNIX hierarchical file system
and sophisticated file system util¬
ities represent a higher level of
functionality than is strictly re¬
quired by many real-time applica¬
tions. A simple real-time system
only needs to provide the ability to
open, read, and write files—
albeit quickly. Real-time applica¬
tions that perform data logging
should spend as little time as
possible interacting with the file

64 UNIX REVIEW NOVEMBER 1985

system since their p 'imary job is
to interact with the system they
are controlling. The necessary
backing store capabilities are
provided by the UNIX calls
open(2), read(2), and write(2).

NON-STANDARD
REAL-TIME ENHAIJCEMENTS

Having described the features
in standard UNIX that are well
adapted, or adaptable, for use in
real-time applicatic ns, we find
that only two items are missing
from our list of seven real-time
requirements— synchronization
of processes with external events,
and predictable and “instan¬
taneous” response to external
events. The rest o' this article
discusses how UN X has been
enhanced and reworked to pro¬
vide these features. By “en¬
hanced” we refer to modified
features already ii UNIX. By
“reworked” we refer to entirely
new features that have left the
UNIX system’s original function¬
ality in place.

We hope it is unde rstood that to
make UNIX faster (an implied
requirement of any *eal-time sys¬
tem), developers must find and
replace inefficient code. Many
parts of the UNIX kernel and a
fair number of the system’s utili¬
ties were never designed to be
used as they are today: thus their
original “tuning” no longer ap¬
plies. Over time, many of these
inefficiencies have been over¬
come and much cods has been re-
tuned. These modiiications have
been made by countless unsung
heroes in a myriad cf UNIX instal¬
lations, but we cannot delve into
the details here. Instead, we refer
you to the proceedings of the
various Usenix conferences ot the
last 10 years.

Creating, Deletirg. and Sched¬
uling Processes. Ch anges made in
this area focus on he scheduler.
The scheduler is usually the first
thing to be modified when UNIX is

tuned for real-time use. That’s
because most implementations of
UNIX use a scheduler that has
been tuned to a timesharing load.
Timesharing embodies a notion
of fairness—each process should
be given its proportionate slice
of the available computing re¬
sources. Real time, though, is
autocratic: some processes are
more equal than others. The most
equal of the lot are not only given
the better part of the system’s
resources, they also must be
guaranteed that processing re¬
sources will be available to them
at any instant. (Other real-time
operating systems have employed
the concept of sub-process, or
task, to provide a flexibility in
scheduling that does not incur
the overhead of context switches.
However, no UNIX vendor of
which we’re aware has chosen
this approach—although it has
appeared in academic incarna¬
tions.)

Imagine, for example, an ap¬
plication that monitors the life
functions of a cardiac patient.
The routine sampling application
might take an interrupt every few
seconds to monitor changes in the
patient’s temperature. If a critical
event—such as apnea—were to
occur, though, the application
might need to immediately dis¬
able temperature monitoring and
start monitoring and responding
to data returned from cardiac
sensors. A second or even a tenth
of a second might be too long to
wait.

To enhance the UNIX schedul¬
er, the RTU operating system has
introduced the concept of real¬
time priorities. Processes with
real-time priorities are selected to
run before processes without
such priorities. A real-time prior¬
ity is established by setting a nice
value in the range -11 to -20.

Real-time processes under this
scheme do not have their priori¬
ties updated by the scheduler as

normal processes do: instead,
they are assigned a fixed priority.
These processes do not incur
scheduling penalties, regardless
of whether they monopolize pro¬
cessor time or not. It thus is
possible in a timesharing envi¬
ronment to run a process that
performs some service at a reli¬
ably high priority whenever the
need arises. One example of
where this might be useful is in
the service of a serial line or a
graphics processor. If two or more
real-time processes are in mem¬
ory with the same priority, they
will run on aJlfo basis.

Modifications to the scheduler
by no means offer the only solu¬
tion. Charles River Data Systems
(CRDS), for instance, has re¬
placed the entire “bottom half” of
UNIX with proprietary software
better suited to real-time use. The
user and programmer operate in a
UNIX paradigm, but the internal
implementation of the system is
“home-grown”. The CRDS oper¬
ating system, called UNOS, looks
like UNIX but supports a notion of
“process” in both the kernel and
user memory space. The inter¬
nals of UNOS are governed by the
use of eventcounts [8], and the
CRDS system employs a schedul¬
er built around this primitive.
The result is a natural cooper¬
ation between different processes
in which real-time response can
be easily attained [3].

Communications Channels.
Pipes were originally implement¬
ed as a special type of disk file.
This made sense on the PDP-11
architecture where UNIX was ori¬
ginally implemented. In that fam¬
ily of machines, memory was
limited, making use of the disk for
pipes worthwhile but slow. As
UNIX migrated to large-memory
architectures such as the VAX
and the Motorola MC68000 fam¬
ilies, use of disk for pipes became
less important. Thus, to speed the
performance of pipes in real-time

UNIX REVIEW NOVEMBER 1985 65

REAL-TIME UNIX

systems, some UNIX variants im¬
plement pipes in memory.

Data Pooling. An important
problem (from a user program’s
point of view) with the current
UNIX implementation is its use of
memory management; program¬
mers may require the ability to
manipulate cache (if the system
has one) as well as to control
those portions of an application
locked into system memory.

In most high-performance ma¬
chines, both an address and a
data cache are used to keep the
processor running at full speed.
When memory is shared, it may
be necessary to disable the cache
on shared pages. Thus, a user
program must have some way of
informing the system that shar¬
ing is in effect.

MASSCOMP’s solution was to
supply two system calls, (pinfo(2)
and cinfo(2)), that allow a user to
examine main memory use. Other
manufacturers have implement¬
ed similar calls. Since there is not
yet a standard for this type of
operation, programmers should
be aware that each manufacturer
does it differently.

Another problem with memory
access is its tendency to make
system response less predictable.
Virtual memory systems are of¬
fered on most modern computers,
including the MASSCOMP MC-
5000, Apollo DN, and Digital VAX
series. Virtual memory is conven¬
ient for programming but it
wreaks havoc on the “predictabil¬
ity” of a program. In most real¬
time applications, the program¬
mer wishes to guarantee that at
least the key parts of a process
have been locked into memory.

Version 7 UNIX contains a
facility to allow memory locking,
but this feature was dropped until
System V brought it back—
meaning that a large number of
UNIX implementations current¬
ly are lacking. Implementations
that stress real-time have had to

Another problem with

memory access is its

tendency to make

system response less

predictable.

reinstate this facility or move to
System V. MASSCOMP’s RTU, for
instance, provides the plockin(2)
and unplock(2) calls for this
purpose.

It should be noted, however,
that these are “dangerous calls”
for a couple of reasons. In the first
place, as more memory is locked
down, less is left available for
general use. What is worse, mem¬
ory deadlock problems can occur
that prevent processes that re¬
quire memory from proceeding
until segments are unlocked. Ob¬
viously, a deadlock can destroy
the performance of a system or
can shut the system down alto¬
gether. In a dedicated real-time
situation, the programmer should
calculate the amount of mem¬
ory needed and make sure that
the machine contains “enough”
physical memory to allow the
application to be “locked” with¬
out causing a deadlock.

Only the system designer can
determine what the value of
“enough” is for any application.
The operating system can enforce
quotas but cannot, of itself, guar¬
antee performance.

Synchronization Between Pro¬
cesses. UNIX signals are used in a
software interrupt scheme origin¬
ally modeled around the concept
of hardware exceptions. Proces¬
sors generate “hardware excep¬
tions” when they receive instruc¬

tions they cannot perform, such
as a division by zero exception.
Signals were provided so that
programmers could implement
exception handlers to allow “or¬
derly termination” if a hardware
event occurred. Signals were later
extended to allow for a few other
‘‘software exceptions”, such as
an interrupt generated by a termi¬
nal interrupt key, like CTRL-C or
DELETE.

In standard UNIX, signals are
implemented on a process-by¬
process basis. Each process typi¬
cally has 16 or more signals that
can be handled (“caught”) inde¬
pendently. (At least one signal is
not capable of being “caught” by
the process. This is the termina¬
tion signal used to abnormally
exit and terminate a process with
extreme prejudice.) Most recent
UNIX systems implement more
than 16 signals per process, in¬
cluding at least one reserved for
the user.

Signals are used for synchroni¬
zation, but they have flaws:

• First, they can be lost. It is
possible for a process to block
out signals. If a signal arrives
under these conditions, it never
will be received. Signals some¬
times are blocked for short per¬
iods to ensure uninterrupted
execution of portions of a pro¬
gram. But the loss of a signal
that represents a critical event
clearly cannot be tolerated.

• Second, signals cannot be as¬
signed a priority. In most real¬
time situations, certain events
are more critical than others,
and must accordingly be as¬
signed a higher priority.

• Finally, only a finite number of
signals can be assigned to any
one process. Depending on the
UNIX implementation, the num¬
ber of available signals may be
too small for the real-time appli¬
cation at hand.

66 UNIX REVIEW NOVEMBER 1985

Many implement Drs of UNIX
have “fixed” signals. The Berke¬
ley signal package in 4.2BSD
provides a case in point. However,
the Berkeley package has prob¬
lems of its own. In “fixing” sig¬
nals, the Berkeley developers lost
many of the original UNIX signal
semantics. They thereby broke a
lot of code. Indeed, as Henry
Spencer of the University of To¬
ronto so eloquently stated recent¬
ly: “4.2BSD does everything
UNIX does, . . .only differently.”
[12]

MASSCOMP has taken a differ¬
ent tack on the signals issue. In
RTU Version 3.0, lour different
event packages were implement¬
ed: three UNIX sigrals packages
(a “standard” Version 7/System
Ill/System V package, a Berkeley
4.1 package, and a Berkeley 4.2
package) and a new package
designed for real-time applica¬
tions based on the asynchronous
system trap (AST).

Since the AST is not closely
related to anything in classical
UNIX, we describe it under a
separate heading.

The Asynchrorous System
Trap. The concept of an asyn¬
chronous system trap, or AST,
first appeared in Digital Equip¬
ment Corporations RSX and
VMS operating systems [1]. As
implemented in MASSCOMP’s
RTU, an AST is a SDftware inter¬
rupt that remedies the defects of
signals.

ASTs have programmer-speci¬
fied priorities, and are queued by
the operating system. Delivery of
ASTs is guarantee!, and occurs
in order of priority. In addition,
each AST handler :an be passed
a parameter when the AST is
delivered. Parameters are used
to distinguish between different
events and often serve as pointers
to memory structures.

As with signals, a process that
expects to receive a certain AST
must set up an AST handler in its

process space. The handler is a
subroutine called asynchronous¬
ly during the normal processing
of the program. When called, the
subroutine runs as part of the
user process and thus has access
to all operating system capa¬
bilities.

ASTs are available systemwide
(rather than being open to only a
few select processes). The num¬
ber of ASTs available is deter¬
mined by the system manager
when the system is built.

Predictable Transfer of Data
to Backing Store. Real-time data
acquisition systems often require
more throughput to disk than is
possible under standard UNIX.
Most UNIX system implemen¬
tations, even those that use
the Berkeley fast file system,
must map large sections of data
to different parts of the disk.
The UNIX system disk-buffering
scheme generally does an excel¬
lent job of caching file-mapping
blocks. This means that the over¬
head of file-mapping seldom in¬
volves an additional physical disk
read. Even so, its file system
overhead may be too great for
some real-time applications.

In such cases, one traditional
approach has been to implement
“contiguous files” by allocating
contiguous disk sectors to a single
file. This has the net effect of
improving file system through¬
put. Beyond this, it is desirable to
reduce all overheads to a mini¬
mum so as to write data to disk at
the highest speeds possible. One
approach is to implement a high¬
speed data-to-disk mode that
grants a single process exclusive
access to the disk. In this mode,
the system locks out all other
accesses to disk, thus eliminating
latency for any additional seeks.

Many UNIX implementations
support “raw disk partitions”
that can be exploited in much the
same way that contiguous files
are. Contiguous files, though,

generally provide a more flexible
way to allocate contiguous disk
blocks than does the partitioning
of a physical disk at system
generation time.

The substitution of a bit map
for the UNIX free list is another
simple efficiency that has ap¬
peared in real-time system imple¬
mentations (as well as a few
timeshared UNIX versions). On
most UNIX file systems, the free
list [10] points to free blocks that
can be written by user processes.
Searching this list, though, is a
slow task: a bit map containing
the same information can be
inspected more quickly. A bit map
is necessary when contiguous
files are implemented because it
represents the easiest way to find
large contiguous space. An inter¬
esting side effect is that a “free-
block bit map” uses less disk
space than the standard UNIX
free list.

Another major change that can
be made to the “standard” UNIX
file system makes logical disk
block size a function of each
mounted file system rather than a
built-in system parameter. This
allows for increased file through¬
put by using a relatively large
block size on large disks (at the
cost of some space lost due to
fragmentation), while using a
smaller block size on floppy
disks, where space utilization is
more critical.

The Missing Two Require¬
ments. An earlier comparison
made between UNIX features and
our list of seven real-time require¬
ments showed only two items
missing—the synchronization of
processes with external events,
and the predictable, “instanta¬
neous” response to external
events. As it turns out, these two
features naturally fall out of work
providing the other five features.
In MASSCOMP’s RTU, for exam¬
ple, external events can generate

Continued to Page 101

UNIX REVIEW NOVEMBER 1985 67

ADVISOR

A routine check

by Bill Freiboth and Bill Tuthill

How can a piece oj code
that is an order of magni¬
tude too large be consid¬
ered reliable? There is that
much more that must be un¬
derstood in order to make
changes. Library functions
. . .are one way to reduce
the apparent complexity oj
a program; they help to
keep program size manage¬
able. and they let you build
on the work of others,
instead oj starting from
scratch each time.

Kernighan and Plauger.
The Elements of

Programming Style

Anyone who peruses old UNIX
code is shocked by the sheer
number of instances where pro¬
grammers obviously have coded
their own functions in preference
to using common library rou¬
tines. Especially prevalent are
private string-handling routines
which are analogous to strcpyQ
and strcmp(). One reason for this
is that many UNIX programs were
written before such library rou¬
tines became available. Another
is that the UNIX system contin¬
ues to grow, making it difficult to
keep up with all the new library
functions that appear. To counter
this trend, we offer a comparison
of the library routines available
on Version 7, System V, and
4.2BSD.

Several years from now, we will
look back on today’s UNIX soft¬
ware with a jaundiced eye. No
doubt, we will be surprised to see
custom binary search algorithms,
tree management routines, and
record locking schemes despite
the fact that perfectly good library
routines already exist for these
purposes. The System V Inter¬
face Definition, for example, in¬
cludes specifications for each of
these routines.

There are good reasons to use
library routines in preference to
“rolling your own”. First, pro¬
grams are easier to understand
and maintain when other pro¬
grammers are already familiar
with—and can trust—calls to
library routines. Second, library
routines are often faster than
hand-coded functions because of
library optimizations. Some ven¬

dors, for example, deliver vastly
improved versions of mallocQ
and the Standard I/O Library.
Third, library routines are main¬
tained by other people, and
changes can be coordinated with
those made to other parts of the
system—meaning that you effec¬
tively have use of a maintenence
staff not on your payroll. Finally,
library routines are documented,
and actually do get improved.
While documentation may be im¬
perfect, it is read frequently, and
is likely to be improved in future
releases. Private versions of func¬
tions tend to be undocumented
and hidden in specific programs,
waiting to surprise users when¬
ever new releases of the operating
system are installed.

As is evident from the table
accompanying this article, Sys¬
tem V has the most library rou¬
tines, with 4.2BSD placing a
distant second. More than half of
the System V additions were actu¬
ally part of System III, but they
are credited to System V since
many users did not install System
III. The curses screen handling
functions, and the termlib or
termcap library routines are list¬
ed as one-line items. Both have
been discussed in this column
before. Future columns will dis¬
cuss library routines available
only on System V or 4.2BSD.

The C compilers on System V

Continued to Page 73

68 UNIX REVIEW NOVEMBER 1985

Availability of Library Routines

Routine V7 Sys V 4.2 Comment

C Library

a64l() X convert base 64 AS CM string to long integer

abort() X X X create a program fault

asctimej) X X X convert a time zone data structure to string format

atof() X X X convert character string to floating point

atoi() X X X convert character string to integer

atol() X X X convert character string to long integer

bcmp() X compare a byte array

bcopy(| X copy a byte array

bzero() X zero a byte array

bsearchf) X binary table search routine

calloc() X X X allocate an initialized array space

clock() X obtain process CPU time

crypt)) X X X encrypt a password using setkey and encrypt

functions

ctime() X X X convert date and time to string format

ecvt() X X X convert floating point to string format

encryptf) X X X encrypt a key using the DES algorithm

endgrentf) X X X end group file processing

endpwent() X X X end password file processing

endutent() X end processing of the accounting file

fcvtO X X X convert floating point to Fortan F string format

free() X X X free an allocated storage block

frexp() X X X split a number into mantissa and exponent

ftok() X construct access key for IPC using msgget, semget

and shmget facilities
ftw() X descend a directory hierarchy and apply a user-

supplied function to each node
gcvt{| X X X convert floating point to Fortran F or E string format
getcwd() X obtain the current directory name in string format
getenv() X X X obtain values for process environment variables
getgrent)) X X X read group file entries sequentially
getgrgid() X X X read group file entries by group ID
getgrnam() X X X read group file entries by group name
getlog in() X X X obtain a pointer to a user login name entry

getoptO X obtain command line options

getpassO X X X read a password from a terminal without echoing
getpwO X X X obtain a user name from a user ID
getpwent() X X X read password file entries sequentially
getpwnam() X X X read password file entries by group name
getpwuid() X X X read password file entries by group ID
getutent() X read accounting file entries sequentially
getutid() X search an accounting file by type
getutlinef) X search an accounting file by device
gmtime() X X X obtain a time data structure containing the GMT time
gsignalf) X send a signal to a process or a group of processes
hcreatef) X create a hash-table
hdistroy() X remove a hash-table
hsearchf) X search for an entry in a hash-table
initgroups)) X initialize group access list
irand48() X return double precision random numbers from 0.0 to

1.0

isalnum() X X X test for alphanumeric character

isalphaf) X X X test for alphabetic character

isascii() X X X test for ASCII character

isattyd X X X test whether a file is associated with a terminal

UNIX REVIEW NOVEMBER 1985 69

%J C ADVISOR

Routine V7

Availability of Library Routines

Sys V 4.2 Comment

C Library (continued/

iscntrl)) X X X test for control character
isdigit() X X X test for digit character
isgraph() X test for printable character excluding spaces
islower() X X X test for lower case character
isprint() X X X test for printable character
ispunct() X X X test for punctuation character
isspace)) X X X test for white space character
isupper)) X X X test for upper case character
isxdigit)) X test for hexadecimal format data
jrand48() X return long integer random numbers from -23' to

731

krand48() X return double precision random numbers from 0.0 to
i n

l3tol() X X X convert from 3 byte integers to long integers
I64a() X convert long integer to base 64 ASCII string
ldexp() X X X combine mantissa and exponent
localtime)) X X X obtain a time data structure adjusted for local time
longjmpO X X X restore stack environment information
Irand48() X return long integer random numbers from 0 to 231
Isearch)) X linear table search and update routine
Itol 3() X X X convert from long integers to 3 byte integers
mallocf) X X X allocate a storage block
memccpyO X copy memory stopping after a specified character
memchr() X search memory for characters
memcmpd X compare memory locations lexicographically
memcpyO X copy memory to memory
memset() X initialize memory to a constant value
mktempd X X X make a unique file name using a template
modf() X X X split mantissa into integer and fraction
monitor)) X X X prepare execution profile for a program
mrand48() X return long integer random numbers from -231 to

731

nlist)) X X X

4

get entries from an executable file's symbol table
nrand48() X return long integer random numbers from 0 to 231
perror)) X X X produce error messages using standard output
pkopen)) X packet driver simulator
putpwent)) X write a password file entry
pututline)) X write accounting file entries
qsort)) X X X quicker sort algorithm
rand)) X X X obtain successive pseudo random numbers range

(0,32767)
random/) X better random number generator than rand))
realloc)) X X X change the size of a storage block
setgrent)) X X X reposition to the start of the group file
setjrnp)) X X X save stack environment information
setkey)) X X X initialize a key for use in encryption
setpwent)) X X X reposition to the start of the password file
setutent)) X reposition to the start of an accounting file
sleep)) X X X suspend process execution for an interval of time
srand)) X X X reset random number generator at a random starting

point
swab)) X X X exchange adjacent bytes
tdelete)) X remove a binary tree node
timezone)) X X get the name of the timezone

70 UNIX REVIEW NOVEMBER 1985

Routine V7

Availability of Library Routines

Sys V 4.2 Comment

C Library (continuedJ

toascii() X convert integer values to ASCII

tolowerf) X X X translate characters to lower case (function in Sys V)

toupper() X X X translate characters to upper case (function in Sys V)

_tolower() X macro version of the tolower function

_toupper() X macro version of the toupper function

tsearchf) X create and search a binary tree

ttyname() X X X obtain the file name of a terminal in string format

ttyslot() X X X locate the accounting file entry for a terminal user

twalk() X traverse (walk) through nodes of a binary tree

tzset() X set time zone variables using an environment variable

utmpname) X specify the accounting file to be examined

String Functions

index)) X X search for occurrence of character

rindex)) X X search backwards for occurrence of character

strcat)) X X X concatenate two full strings

strchr)) X search for occurrence of character, like indexf)

strcmp)) X X X lexical comparison of two full strings

strcpyl) X X X copy a string into a second string

strlen)) X X X obtain the length of a string

strncat)) X X X append up to "n" characters to a string
strncmp)) X X X lexical comparison of no more than "n" characters
strncpy)) X X X copy "n" characters of a string
strnspn)) X obtain length of initial string consisting of characters

excluded from a second string
strpbrk)) X search for a member of a set of characters
strrchr)) X search backwards for occurrence of character, like

rindex))
strspn)) X obtain length of initial string consisting of characters

from a second string
strtok)) X search a string one token at a time

Standard I/O Library

clearerr)) X X X reset error, end of file indicators
cterm id() X obtain the filename for a terminal
cuserid)) X obtain the login name of user as a string
fclose)) X X X close a data stream
fdopen)) X X X connect a data stream to an open file
feoff) X X X test for an end-of-file condition
ferror)) X X X test for error conditions
fflush)) X X X flush a data stream without closing it
fgetcl) X X X read a character from an input data stream
fgetsf) X X X read a string, but no more than "n" characters
fileno)) X X X obtain the file descriptor for a data stream
fopen)) X X X open a data stream
fprintf)) X X X place output in a named output stream

fputcl) X X X write a character on a data stream

fputs() X X X write a string onto an output stream

fread)) X X X read buffered input from a data stream

freopen)) X X X redirect output of an open data stream

fscanf)) X X X scan input data from a named input stream

fseek)) X X X reposition random read/write pointer

UNIX REVIEW NOVEMBER 1985 71

,11
111

111

^Jc ADVISOR

Routine V7

Availability of Library Routines

Sys V 4.2 Comment

Standard I/O
1continued)

ftell()

Library

X X X determine current position in a data stream

fwrite() X X X write buffered output to a data stream

getcf) X X X read a character (macro version of fgetc)

getchar() X X X read a character from the standard input (macro)

gets,) X X X read a string up to a newline

getw() X X X read a word from an input stream

pclose() X X X close an interprocess data stream

popenl) X X X open an interprocess data stream

printf() X X X place output in the standard output

putc() X X X write a character (macro version of fputc)

putchar() X X X write a character to the standard output (macro)

puts,) X X X write a string and append a newline
putw() X X X write a word on an output stream
rewind() X X X reposition to the beginning of a data stream
scanf() X X X scan input data from the standard input
setbuff) X X X assign a buffer to a data stream
sprintf)) X X X place output in a character stream
sscanf() X X X scan input data from a character string

ssignalf)
system!) X

X

X X

specify action to perform upon receipt of a signal
issue a shell command

tempnamf)
tmpfile()
tmpnam()

ungetcf) X

X

X

X

X X

obtain filename for temporary file in any directory
create a temporary file
obtain filename for temporary file in /tmp

put a character back into the input data stream

Math Library

hypot|) X X X Euclidean distance
acos() X X X arccosine function
asin() X X X arcsine function

ceil,) • X X X ceiling function

loglO|) X X X common logarithm

cos|) X X X cosine function
exp|) X X X exponential

floor() X X X floor function

cosh() X X X hyperbolic cosine function

sinh() X X X hyperbolic sine function

tanh() X X X hyperbolic tangent function

fabs() X X X floating point absolute value

abs|) X X X integer absolute value

matherr()
log|) X

X

X X

math library error handling function
natural logarithm function

pow() X X X raise a value to a given power

sin() X X X sine function

sqrt|| X X X square root

tan() X X X tangent function

gammaf) X X log gamma function

fmod()

erfc|)

erf|)
atan() X

X

X

X

X X

remainder function
complementary error function : I - erf(x)
error function : erf(x)
arctangent function

atan2() X X X arctangent function

j[01 n]() X X X Bessel functions of the first kind

y(01n]() X X X Bessel functions of the second kind

72 UNIX REVIEW NOVEMBER 1985

Routim B V7

Availability of Library Routines

Sys V 4.2 Comment

Miscellaneous •

Routine 5

arc() x X X draw arc given the center and end points

assert() X X X debugging macro for embedding diagnostic code

circled X X X draw circle given center and radius

closepl)) X X X close a plotting device, writing buffered output

cont() X X X draw line between current position and second point

curses X X cursor addressing and screen updating library

dbm X X database management subroutines

directory X directory operations

erased X X X clear the plotting area

label)) X X X supply labels for plotting

line() X X X connect two data points with a line

linemod() X X X specify style for connecting lines

logname() X obtain the login name of a user

move)) X X X reposition the cursor

mp X X multiple precision integer arithmetic library

openpl)) X X X prepare plotting device to receive data

point)) X X X plot a data point

regcmpf) X compile a regular expression

regex() X execute regular expression for a pattern match

re_comp|) X compile a regular expression

re—exec() X execute regular expression for a pattern match

space)) X X X define the perimeter of a plotting space

termlib X X terminal-independent operation library

varargs X variable argument list

Network Routines

byteorderf) X convert values between host and network byte order

gethostent)) X get network host entry

getnetentf) X get network entry

getprotoentf) X get protocol entry

getservent)) X get service entry

inet_addr() X Internet address manipulation

rcmd() X return stream to remote command (superuser)

rexec() X return stream to remote command

Continued from page 68
and 4.2BSD (almost identical ver¬
sions of pcc) have been improved
since Version 7. Both compil¬
ers now support enumeration
data types, non-unique structure
member names, and the void
data type (for functions not re¬
turning a value). Long program
identifiers are supported in 4.2,
but were not added to System V
until release 2. Both System V
and 4.2BSD offer profiled func¬
tion libraries as an aid for soft¬
ware debugging, which means
that profiling is supported at the
library function level rather than
simply at the user program func¬
tion level.

When should library routines
either found only on System V or
4.2BSD be used? And when
should you restrict yourself to
library routines found on every
version of UNIX? If you already
have application software on the
market, you’ll probably be forced
to support all versions of UNIX.
But if you’re writing software
now that will reach the market
in a year or so, you’ll probably
find System V compatibility al¬
most everywhere by then. If you
need the networking capability of
4.2BSD, then use the Berkeley
system because it will probably
find its way onto System V before
long.

Bill Freiboth is President of
Pacific Micro Tech, an El Cerrito,
CA, firm engaged in system integra¬
tion, publishing, and consulting. He
formerly served as Vice President
of R&D at Decimus Corporation,
where he helped design vertical

market applications for financial
institutions and assess IBM equip¬

ment for leasing.
Bill Tuthill was a leading UNIX

and C consultant at UC Berkeley for
four years prior to becoming a
member of the technical staff at Sun
Microsystems. He enjoys a solid
reputation in the UNIX community
earned as part of the Berkeley team
that enhanced Version 7 (4.0, 4.1,
and 4.2BSD). ■

UNIX REVIEW NOVEMBER 1985 73

Smalltalk has been a big con¬
versation piece ever since its
introduction over a decade ago.
Despite this, many people still are
very confused about what Small¬
talk is and what significance it
has for the computing communi¬
ty. To help clarify, I recently
visited with Dan Ingalls, one of
the system’s original designers
from the Xerox Palo Alto Re¬
search Center (Xerox PARC),
who—like many of his compatri¬
ots—has since migrated to Apple
Computer. After we talked for a
while in his office at Apple, he
switched on his Macintosh to give
me a preview of what the com¬
pany’s new Smalltalk environ¬
ment will look like.

He called up a few windows
and menus and showed how the
scroll bar allows one to move
around in a document, but all the
while I was getting fidgety waiting
for the Smalltalk demo to start.
After all, I already knew how to
use a Mac. So when Ingalls start¬
ed to demonstrate how to use
what I took to be MacWrite, I
finally asked, “Dan, when are we
going to get into Smalltalk?’’ He
looked at me with a puzzled
expression and replied, “This is
Smalltalk.’’

As it turns out, many of the
concepts the Macintosh uses
come from Smalltalk. In 1979,
Xerox enlisted the support of
Apple, DEC, HP, and Tektronix to

INDUSTRY
.INSIDER.
What is Smalltalk anyway?

by Mark G. Sobell

help it debug Smalltalk. One of
Smalltalk’s primary goals was to
be a portable environment, so
Xerox decided that one of the best
ways to debug portability was to
let several vendors try to bring up
the system on a variety of ma¬
chines. As part of this process,
Xerox gave Apple certain rights to
Smalltalk after Apple had suc¬
ceeded in exorcising the system to
Xerox’s satisfaction.

A while later Apple came out
with the Macintosh (not to men¬
tion the Lisa) which, although not
a Smalltalk machine, certainly
emulated the Smalltalk environ¬
ment. A number of the user
interface techniques originated at
Xerox PARC (overlapping win¬
dows, mice, pop-up menus, scroll
bars) have since appeared on a
number of other systems, notably
some of the graphics-oriented

UNIX systems.

SMALLTALK'S JARGON

Smalltalk, the brainchild of
Alan Kay, has its roots in Simula
and message passing. According
to Ingalls, “Alan often takes an
extreme point of view—that’s
what makes him a good visionary.
He took the message-sending
model of procedure invocation to
its logical extreme in designing
Smalltalk.’’ In so doing, he cre¬
ated a world of objects. Each
object is an instance of a class;
the class describes the format
and also the behavior of all its
instances. When anything is
done in Smalltalk, it happens
because an object receives a
message. The statement:

days + 4

thus actually reads as, “send the
message 4 + 4’ to the object days’’.
Exactly what is done with the
message depends on how the
receiver, in this case days, inter¬
prets the + . The code that days
runs in response to the message
“ +4’’ is called a method. Finally,
classes are arranged in an inheri¬
tance hierarchy so that user-
defined classes typically inherit
many of their useful properties
from pre-existing classes in the
Smalltalk system.

Although the individual con¬
cepts seem simple enough, the

74 UNIX REVIEW NOVEMBER 1985

COMPLETE
YOUR

UNIX REVIEW
LIBRARY!

June/July 1983—UNIX on the IBM/PC_
August/September 1983—Sritek and Venix .
October/November 1983—UNIX Typesetting
December/January 1984—Vi and Emacs . . .
February/March 1984—UNIX Databases . . .
April/May 1984—Menu-based User Interfaces
June 1984—Big Blue UNIX .
July 1984—The AT&T Family .
August 1984—Documentation.
September 1984—System Administration . . .
October 1984—UNIX on Big Iron .
November 1984—User Friendly UNIX .
December 1984—Low Cost UNIX .
January 1985—Evolution of UNIX.
February 1985—UNIX Portability.
March 1985—Performance.
April 1985—UNIX Networking.
May 1985—Distributed Resource Sharing . . .
June 1985—UNIX Applications .
July 1985—Office Automation.
August 1985—Database Intricacies .
September 1985—Languages.
October 1985—UNIX and Universities.

Back issues are $4.95 each including postage.
Payment in advance is required. Send this order
form with check (US funds payable at US bank only)
or credit card information to: REVIEW Publica¬
tions, 901 S. 3rd St., Renton, WA 98055.
Additional $ 1.00/issue for foreign mail.

Name _

Company _

Address -

City _ State — Zip -

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

U INDUSTRY INSIDER

whole picture is elusive. In the

introduction to their book on
Smalltalk, Goldberg and Robson

(see the references at the end of
this column) explain this phe¬
nomenon by saying, “Due to the

uniformity with which the object-

message orientation is carried out
in the system, there are very few

new programming concepts to
learn in order to understand

Smalltalk. These concepts are

presented by defining the five

words that make up the vocabu¬
lary of Smalltalk—object, mes¬

sage, class, instance, and meth¬

od. These five words are defined
in terms of each other, so it is
almost as though the reader must
know everything before knowing
anything.”

During the demo I started to
realize the advantage of Small¬
talk is that it is a complete

environment one can structure in
any way—and with any look—
that one likes. It can respond in

whatever manner you wish be¬

cause beneath the environment

lies a very malleable, portable,
object-oriented language.

FUTURE SMALLTALK

Until recently, people outside
academia had three major prob¬
lems with Smalltalk. First on the
list was cost and availability: the
system would only run on a
$30,000 Xerox machine that
you couldn’t buy. Last year, Tek¬
tronix introduced Smalltalk on a

$15,000 piece of hardware. This
year, it has been brought up on
the IBM PC/AT, and a pre-release
version is available for the 512
KB Macintosh.

The second problem was that
Smalltalk ran very slowly on most
machines. With the advent of the
68020 and other fast micro¬
processors, Smalltalk should run
at an acceptable rate on less
expensive, single-user machines.

The third problem—yet to be
solved—is that because Small¬
talk is a whole environment, it
takes up a great deal of space. You
can put only a limited subset of
Smalltalk on a 512 KB Mac, and
even then you have only enough
room left over for a minor pro¬

gram. You really need a 1 MB Mac
with a hard disk to bring up a

useful version of the full system.

WHAT IS APPLE UP TO NOW?

A product named MacApp (for

Easier
than
1-2-3...

BUT DESIGNED

FOR LARGER

SYSTEMS

_ P.0. BOX 2669
XTZXrZ KIRKLAND, WA 98033-0712

I EFFECTIVE SOFTWARE FOR BUSINESS

C-Crtc

iessssr
Wanu»\

ft ^

MiBil®

It’s simple, C-CALC from DSD Corporation is

more flexible, has more functions, and is easier
to use than the best selling spreadsheet. We
made it that way for a very simple reason, you’ll
get more work done and make better decisions
in less time. That’s what makes you successful
whether you are planning for the future, fore¬
casting trends, or analyzing profits.

The most popular spreadsheets require a great
deal of time to get up and running. When we
created C-CALC we kept in mind that time is
your most important resource. Our On-Line
Help facilities, prompts and menus allow even

someone with minimal experience to see
meaningful results in very little time. Our built-
in training procedures let you pace your own
learning with tutorial topics that range from
basic to advanced. As you become more expe¬
rienced, C-CALC allows you to bypass
prompts and menus to save even more time.

So call DSD Corporation at (206) 822-2252.
C-CALC is currently available for: UNIX, VMS,
RSTS, RSX, IAS, P/OS, AOS, AOS/VS (Data
General), IBM CSOS.

C-CALC is a registered trademark of DSD Corporation UNIX is a registered

trademark of Bell Labs. P/OS, RSTS and RSX are registered trademarks of

Digital Equipment Corporation. AOS and AOS/VS are registered trademarks

of Data General Corporation.

Circle No. 299 on Inquiry Card

76 UNIX REVIEW NOVEMBER 1985

Macintosh Application) is already

into beta test at Apple. MacApp is

an extended, object-oriented Pas¬
cal language that Apple claims
will help software developers cut

the amount of time it takes to

code an application. One reason
for the claim is that MacApp
comes complete with a user-inter¬
face library. You can use the
library to code the user-interface

portion of an application quickly,

writing the nuts and bolts in
Pascal. But MacApp, like Pascal,
is a conventional, compiled lan¬
guage: you need to edit your
source, compile it, and then link it
before you can execute it. This
tedious procedure is not good for
prototyping applications.

Because Smalltalk is a good
prototyping language, Apple is
currently converting it to the

architecture of MacApp. With
this compatibility, developers will
have the option of prototyping
an application in the friendly
Smalltalk environment and then
porting it to a more conventional
system for increased efficiency

and security. If it flies, the Mac-
App/Smalltalk connection could

be inviting to application develop¬

ers—a prospect that Apple finds
very intriguing indeed.

If you have an item appropri¬
ate for this column, you can
contact Mr. Sobell at 333 Cobalt
Way. Suite 106, Sunnyvale. CA
94086.

Mark G. Sobell is the author of
the bestselling book, A Practical
Guide to the UNIX System (Benja¬
min/Cummings, 1984) and the new
A Practical Guide to UNIX System V
(Benjamin/Cummings, 1985). He
has been working with UNIX for
over five years and specializes in
documentation consulting and troff
typesetting. Mr. Sobell also writes,
lectures, and offers classes in Ad¬
vanced Shell Programming and
awk. ■

For more information about Smalltalk, try

to find a copy of the August. 1981, issue of
Byte, which is almost entirely devoted to the
subject. There are also two books written by
Smalltalk developers: Smalltalk-80: The
Language and its Implementation by Gold¬
berg and Robson, and Smalltalk-80: The

Interactive Programming Environment by
Goldberg. Both are published by Addison-
Wcsley. You can obtain more information on
the unsupported pre-MacApp version of
Smalltalk by writing to Eileen Crombie,
Software Library. Apple Computer. Inc.,
20525 Mariani Drive, Cupertino. CA 95014.

Finally, a complete XENIX
subsystem for the AT.
Disk Features
• 30, 40, 55, 72, 118 Megabytes

(iformatted)
• Combine drives with each other or

existing drive
• 25 milliseconds average access time

• Simplified installation
• Necessary file modifications done

automatically

Tape Features
• 60 Megabyte 1/4 inch cartridge
• Standard XENIX commands (cpio, tar,

dd, etc.)
• Fully integrated driver software

Subsystem Features
• Entire subsystem fits inside the AT

• External version with 6 expansion
slots available (pictured)

• One year factory warranty

Emerald
Systems Corporation

Mainframe Storage for Micros

4757 Morena Boulevard
San Diego, CA 92117
(619) 270-1994
Telex 323458 EMERSYS
EasyLmk 62853804

Emerald & Mainframe Storage for Micros''* Emerald Systems Corp.

UNIX REVIEW NOVEMBER 1985 77

RULES
OF THE GAME

Monkey business

by Glenn Groenewold

Readers who have been wait¬
ing on the edge of their seats for
further developments in the saga
of Jack Megabyte need wait no
longer. When we last reported on
this drama in the October, 1984,
column, Jack was being hassled
by his former employer, Goli¬
ath Corporation, because—along
with Helga Termcap, another ace
systems designer—he had start¬
ed a business with the intention
of developing and marketing
a new operating system capable
of outperforming Goliath’s. The
latter was throwing up legal
roadblocks against this enter¬
prise, claiming that Goliath—not
Jack—was the owner of any new
system he had dreamed up while
in the company’s employ.

When we took leave of Jack
and Helga, we intimated that they
most likely would have effective
weapons of their own in the legal
battle with Goliath. An important
part of their arsenal for counter¬
attack could be found among the
group of legal actions collectively
known as business-related torts.
Given the increasing frequency
with which the game of employee
musical chairs is played these
days, both in American business
generally and in the comput¬
ing industry in particular, these
bases for legal actions (there are
more than 20 altogether) are
seeing more and more use, as are
some of the more familiar legal

varieties of claims for injuries.

WHAT IS THIS THING
CALLED "TORT"?

Non-lawyers often find the
term “tort” somewhat amusing.
But it’s a venerable concept in
law, where it distinguishes a civil
impropriety from one that is
criminal in nature. During the
early history of our legal system,
the two categories were pretty
much distinct. In recent years,
however, they’ve become blurred
to the point where it’s not unusu¬
al for a single act to be the basis
both for a civil lawsuit and a
criminal prosecution.

What’s more, we even have
situations where the same indi¬
vidual may be regarded simulta¬
neously as an “innocent” injured
party under one concept and as
a malefactor under the other.

Thanks to nationwide reportage,
many people are aware of the
notorious California case involv¬
ing a would-be burglar who in¬
jured himself falling through a
skylight on the victim’s roof, and
then successfully sued on ac¬
count of his injuries.

Despite this modern-day mud¬
dying of the water, the basic
notion of a tort remains what it
has always been: a private
wrong, as opposed to a public one.
This is why it’s such a useful legal
concept for individuals who’ve
been injured by someone else’s
actions.

Some torts, such as slander
and libel, are ancient. Others
have developed relatively recent¬
ly, or have been expanded far
beyond their historical scope.
The concept of “infliction of emo¬
tional distress” is a prime exam¬
ple. In the current sense, this
tort scarcely existed in common
law, and was almost impossible
to prove before its modern
evolution.

THAT UNCERTAIN FEELING

Since business-related torts
are a matter of state law, not all of
them exist in every state. And
when the same tort is found in
various states, it may be known
by various names. Some business
torts clearly have no application
to disputes involving a former
employer, an erstwhile employee,

78 UNIX REVIEW NOVEMBER 1985

FUSION Is the only connection.

In an industry fragmented by diversity, FUSION
makes connections.

FUSION is the LAN software that links different
operating systems, diverse LAN hardware, and di¬
verse protocols, to give you high speed communi¬
cation across completely unrelated systems.

FUSION frees you to buy the best computer for
the job—without worrying about compatibility.
Your VAX mainframe can now communicate with
your IBM-PC. You can even add M68000 work
stations or a communications server. FUSION
links them till—and more. Regardless of operating
system, protocol, or network hardware.

■ With FUSION, any user on any system can
perform file transfer, remote login, and
remote execution.

■ FUSION offers a choice of two standard
protocols—XNS or TCP/IP. Some cus¬
tomers have even developed private
protocols.

■ And you can create your own application
programs, using FUSION utilities.

■ FUSION accommodates all major LAN
boards, too. So network interface is no
obstacle.

When you add FUSION, you never lose your
hardware investment. In fact, you get more out of
it than ever.

Ask for FUSION. It's the connection you’ve
been looking for.

M68000 VAX IBM PC

UNIX VMS MS-DOS

EXCELAN INTERI.AN 3COM

A sample network using a few of the many
configurations made possible with FUSION.

For further information please contact:
Network Research Corporation
2380 North Rose Avenue
Oxnard, California 93030
(805) 485-2700
(800) 541-9508
FUSION is a licensed trademark of Network Research Corporation.

Circle No. 252 on Inquiry Card

Akl network
S_5 research
■ V corporation

U RULES OF THE GAME

or the latter’s new employer or
business enterprise. But in a
given situation, the relevance of
some of these other disputes may
be the subject of contention.

Moreover, the legal require¬
ments necessary to prove any of
these actions are highly techni¬
cal, and vary from state to state.
As a result, it’s not possible here
to do more than to suggest reme¬
dies that might be available to
participants in controversies re¬
sulting from the ongoing business
activities of a former employee.

FROM THE EMPLOYEE'S
PERSPECTIVE

Two alternative possibilities
exist when a departing employee
intends to continue a remunera¬
tive activity in potential competi¬
tion with a former employer. Each
presents a different legal scenar¬
io. On the one hand, the employee
may expect to take a job with
another concern in the same
field. Or, as with Jack Megabyte,
he or she may attempt to launch a
competing enterprise. We’ll begin
by considering the first of these
situations.

There are several ways an
employer might find itself on the
receiving end of a lawsuit brought
by a former employee if it seeks to
prevent employment by a com¬
petitor. For instance, if it re¬
sponds to an inquiry on the part
of the prospective employer with
something like, ’’Well, hire her if
you want to, but you ought to
know about her $150 a day
habit”, or perhaps, ’’We’re happy
he left before he got a third
receptionist pregnant”, it had
better be able to prove these
things, lest it find itself stuck
with damages for the old-fash¬
ioned tort of slander (or def¬
amation, as it’s often called
nowadays). Even if the former
employer can establish that any
personal information of this sort

is true, it may nevertheless find
itself sued on the basis of inva¬
sion of privacy.

Assuming the employer does
not resort to such canards, but
still dissuades a prospective new
employer from hiring its ex-em¬
ployee, it might nevertheless ex¬
pose itself to a claim of inter¬
ference with prospective eco¬
nomic advantage. For example,
suppose it threatens to bring a

We have situations

where the same

individual may be

regarded

simultaneously as an

"innocent" injured

party under one

concept and as a

malefactor under the

other.

lawsuit against the prospective
employer if it hires the for¬
mer employee, or to terminate
a licensing or distribution
agreement.

Finally, if all else fails, in
liberal jurisdictions like Califor¬
nia there’s the rapidly expanding
tort of infliction of emotional
d istress to give redress to a former
employee who has been blocked
vindictively from obtaining new
employment.

Where the employee proposes
to follow the alternate route of
launching his or her own busi¬
ness and the former employer

attempts to thwart this, some of
the legal actions just mentioned
may be available. However, there
are others as well.

The basic business tort apply¬
ing to this type of situation is
interference with the right to
pursue a lawful business, which
is pretty much what its name
suggests. In addition, there are
less obvious measures that may
present themselves in certain
cases.

If the former employer has
required the employee to disclose
all of his or her creations during
the employment, and the facts
indicate that the material in
question actually was created
outside the scope of employ¬
ment—making it the employee’s
property—a claim of misappro¬
priation of trade secrets or
copyright infringement may be
in order. (The latter, since 1978,
has been exclusively within the
jurisdiction of the federal courts.
It therefore no longer constitutes
a state business tort.)

If none of these actions ap¬
pears to fit, the situation may
permit an action on the basis of
unfair competition. Originally,
in common law, this tort was
rather narrow in scope, essential¬
ly applying only to situations in
which the buying public had
been misled by some action on
the part of a business competitor.
In recent years, it has expanded to
become rather a catch-all, so that
it now can encompass such
things as unfair tactics on the
part of a former employer de¬
signed to prevent competition
from its ex-employee.

FROM THE FORMER
EMPLOYER'S PERSPECTIVE

The employer, however, is not
exactly without legal weapons for
use in lawsuits against its es¬
tranged employee, and, in some
cases, in actions against a new
employer who has alienated the

80 UNIX REVIEW NOVEMBER 1985

Sorry, Countess, this is one computer
where you won't find VADS1

Although the VERDIX Ada® Development

System(VADS) won’t be rehosted on Charles Babbage’s

Difference Engine, it is being hosted on and targeted for

a variety of computer systems and embedded system

architectures.

The Department of Defense (DoD) has now validated

VADS for a growing number of computers and operating

systems including the DEC/VAX™ series under UNIX'™
4.2 BSD and ULTRIX™, and for the Sun-2™ Worksta¬

tion. Future product releases will include Host Develop¬

ment Systems for VAX/VMS™ and UNIX System V, and

cross-taigeted systems for 4 major architectures...

Motorola 68000 and Intel “86” families, the NS32032,
and MIL-STD-1750A.

VADS is the fastest and friendliest Ada development

system available. It is specifically designed for large-scale

Ada program development in a production environment.

VADS features a complete run-time system, plus an

interactive, screen-oriented, fully symbolic debugger that

lets you easily pinpoint errors. Unexcelled diagnostics and

Ada library utilities quickly manage, manipulate and

display program library information, dramatically shorten¬
ing development times.

VADS from VERDIX. The finest, fastest and most

cost-effective Ada Development System on the market to¬

day. The biggest breakthrough in programming since Ada
herself.

For full information, call Jack Crosby, Director of
Marketing, at (703) 378-7600.

VERDI\-
14130 Sullyfield Circle, Chantilly, VA 22021

Ada is a registered trademark of the U.S. Government. Ada Joint Program Office.
VAX, VMS and ULTRIX are trademarks of the Digital Equipment Corporation

UNIX is a trademark of Bell Laboratories
Sun-2 is a trademark of Sun Microsystems. Inc.

VERDIX and VADS are trademarks of Verdix Corporation

Circle No. 250 on Inquiry Card

y RULES OF THE GAME

employee's affections.
The latter can itself be sued for

misappropriation of trade se¬
crets if it can be shown that one of
the reasons it hired the employee
was to obtain access to the trade
secrets that he or she had learned
in the former employment. The
new employer could also be the
subject of a claim of unfair com¬
petition for having lured a key
employee away from its competi¬
tor, or it could be sued for induc¬
ing a breach of contract—which
in this case would be the employ¬
ee's contract of employment with
the former employer. In some
states, the new employer also
might be liable for interference
with an employment relation¬
ship, though this tort ordinarily

FRANZ
THE FIRST NAME IN

LISP

Franz LISP from Franz
Inc. is currently available
under UNIX and VMS.
Now with Flavors and
Common LISP compatibil¬
ity. Franz sets the stan¬
dard for LISP.

Franz Inc.
1141 Harbor Bay Parkway
Alameda, California 94501
(415) 769-5656

UNIX is a trademark of Bell Labs. VMS is a
trademark of Digital Equipment Corporation.

Circle No. 287 on Inquiry Card

82 UNIX REVIEW NOVEMBER 1985

has been applied only when a
physical injury has occurred to
an employee. Thus, from our
standpoint, this tort largely would
appear to be preempted by the
tort of unfair competition.

Turning its attention to its
former employee, the erstwhile
employer may have legal actions
available based on misappro¬
priation of trade secrets, copy¬
right infringement, or unfair
competition, all of which have
been discussed here. But it may
also have a claim based upon the
employee’s breach of contract.
This is where the contract of
employment between the employ¬
er and employee (which we con¬
sidered last September) becomes
highly important.

TVee Shell
A Graphic Visual

Shell for Unix/
Xenix End-Users and

Experts Alike!

"A Higher Form of Software"
24000 Telegraph Road
Southfield, Ml 48034

(313) 352-2345
TELEX: 386581 COGITATE USA

Circle No. 288 on Inquiry Card

If, for example, the employee
had agreed that he or she would
not take employment with a com¬
petitor for a specified time after
leaving the first employer, or
would not start a business in
competition with the employer,
this provision might be enforce¬
able, depending on all of the
circumstances. But because rea¬
sonable restrictions of this type
may be valid in whole or in part,
employees in key positions should
take the precaution of obtaining
competent advice at the time the
terms of their employment are
negotiated.

AND NOW, BACK TO OUR
STORY

So what is to happen with Jack
Megabyte in his legal battle with
Goliath?

I hope the contents of this
article are sufficient to illustrate
why 1 can’t possibly answer that
question with any degree of cer¬
tainty. In most places, the odds
are that the various lawsuits will
take what seems like an eternity
to go to trial. When they finally
are debated in court, the results
will depend on the multiplicity of
facts that are developed and, of
course, the laws of that particular
state.

I’d like to think that during the
long wait, Jack will manage to
strike it rich in the Publishers’
Clearinghouse sweepstakes and
find time to luxuriate on Majorca,
while Helga turns her talents to
successfully franchising a chain
of t'ai chi exercise studios, to her
immense profit. We all like happy
endings, don’t we?

Glenn Groenewold is a California

attorney who devotes his time to
computer law. He has served as an
administrative law judge, has been

active in trial and appellate work,
and has argued cases before the

state Supreme Court. ■

CLEO Software
a division of Phone 1. Inc
1639 North Alpine Road
Rockford, IL 61107
TELEX 703639

L-Ltu is your
SNA or BSC Gateway

Connect your IBM. Apple, Tandy,
Zenith, A.T.&T., Hewlett-Packard,
Televideo, NCR, IMS, SUN, or other
DOS or UNIX-based system to
another micro or to your mainframe
with CLEO Software.

Now you can connect your PC LAN, too!

For details call: 1(800) 233-CLEO
In Illinois 1(815) 397-8110

-
_
-

n=
i—

rr
“

i 1

Circle No. 265 on Inquiry Card

CLEO and 3780Plus are registered trademarks of CLEO Software.
IBM is a registered trademark of International Business Machines Corporation: Apple is a registered trademark
of Apple Computer: UNIX is a registered trademark of A.T.&T. "technologies, Inc.

FIT
TO PRINT

It's in the stars

by August Mohr

A premise of the Whole Earth
Catalog holds that the best intro¬
duction to a book is the book
itself. I wholeheartedly agree, so
in launching this new book re¬
view column I will attempt to let
authors speak for themselves in a
way that, I hope, will let you get
an accurate idea of what the book
is about.

Three “guides” to UNIX have
crossed my desk in the past
month or so, and for different
reasons they all deserve com¬
ment. They are: The UNIX Envi¬
ronment, by A.N. Walker; A Prac¬
tical Guide to UNIX System V, by Mark G. Sobell;
and XENIX by Example, by The Staff of M & M
Technologies Corporation.

The UNIX Environment

Andrew N. Walker
151 +xi pp. ISBN 0-471-90564-X
John Wiley & Sons, 1984
605 3rd Ave.
New York, NY 10158
$15.95 (paper)

Walker has produced a delightful book. As soon
as I opened it, he already had captured me with
anecdotes. Walker clearly enjoys his subject, and his
pleasure is infectious. 1 read passages to my wife,
who knows little about UNIX, and got many honest
chuckles from her. Walker’s lighthearted style is
completely appropriate since the book is intended to
communicate what using UNIX is like, rather than

how it should be used.
It is clear that Walker is writing

to the computer professional who
is not familiar with UNIX but
wants to know more about it
without actually having to use a
system. In his own words:

I hope that by the end of
this book, ... if you do not
already use Unix, you will
be able to persuade your
company, or your institu¬
tion, or your rich uncle, or
whatever, to give you a Unix
installation to play with.

Unless you have an incredibly boring view of
the nature of computing, your life will never
be the same again.

My own introduction to UNIX came by way of a
1981 article in Computer magazine authored by
Kernighan and Mashey called “The Unix Program¬
ming Environment”. This book is very reminiscent
of that article.

Walker also goes beyond introducing readers to
the style of UNIX in his discussion of the system’s
internals. Because he is writing to computer-
oriented people, he explains the concept of fork and
exec before he even gets to the shell. A discussion of
the kernel’s view of the file system comes even
earlier.

How do we make available a particular
block of the disc? Well, we first of all scan the
buffer pool to see if the block is already
available; if so, we can return immediately. If
not, we have to find an empty buffer, issue a
request to the hardware, and wait for the
information to arrive. How do we find an

84 UNIX REVIEW NOVEMBER 1985

NAME THE MOST
WHY USED
NTEGRATED

OFFKE AUTOMATION
SOFTWARE FOR
UNIX SYSTEMS.
"IMPLEX II"

YOU'VE GOT IP.
User satisfaction is the primary reason no other product can

make this claim. Already in its second generation, UNIPLEX II
offers features designed to meet the requirements of the most
demanding user.

The beauty of UNIPLEX II is its simplicity. One personality and
one command structure throughout the program provide an ease
of use never before experienced with UNIX application software.

UNIPLEX II integrates sophisticated word processing,
spreadsheet, and relational database applications into a
powerful one-product solution.

UNIPLEX II uses termcap, so it can run on virtually any
computer terminal. “Softkeys” allow the user to define function
keys which are displayed on the 25th line of most terminals to
provide versatility and ease of use.

All this at a price you’d normally pay for a single application
software package.

UNIPLEX II is available immediately from UniPress Software,
the company that’s been at the forefront of quality UNIX
software products longer than anyone else.

Call today! Once you’ve got it, you’ll see why UNIPLEX II is
the most widely used integrated office automation software for
UNIX-based systems.

OEM terms available. Mastercard and Visa accepted!

Write to: UniPress Software, 2025 Lincoln Hwy., Edison, NJ 08817
or call: 1-800-222-0550 (outside NJ) or 201-985-8000 (in NJ);
Telex: 709418. European Distributor: Modulator SA, Switzerland
41 31 59 22 22, Telex: 911859.
I'NIX Is a trademark of AT&T Bell Laboratories, L'nlplcx II ts a trademark of t'nlptcx Integration Systems.

flOU/AMllA&ZOHTHf
^ AHTUNIX PC- 7500

%

IniPress Software
)bur Leading Source for UNIX “Software

Circle No. 260 on Inquiry Card

U FIT TO PRINT

The best Introduction to a book is

the book itself.

empty buffer? Well, with luck there is one not
in use at all. Failing that, we latch on to a
buffer that has not changed from its equiv¬
alent on the disc; this can be re-used straight
away. Failing that, wefind a buffer that is un¬
likely to be wanted soon, issue a request to
the hardware to copy it back to the disc, and
then we can grab it for our own purposes.
Requests to the hardware are themselves
buffered. and possibly dealt with out of order
to improve efficiency.

Naturally, real life is much more complicat¬
ed than its simplified description here. Ta¬
bles get full, buffers are soon all in use, and
stringent precautions must be taken against
deadlocks, races, errors, and breaches of

IBM XENIX
DISK-TAPE-RAM
FOR THE IBM PC/AT—XENIX® OR DOS:

86 MEGABYTE HARD DISK - $2495
28ms average access, longest MTBF, 1 year
warranty. Finest quality drives made.

60 MEGABYTE TAPE BACKUP - $1695
90 IPS, 5MB/minute cartridge tape. We ship the
same unit IBM sells. Highest performance.

2 MEGABYTE RAM CARD - $745

120ns RAM, fully populated. Why pay more?

FIND OUT about the IBM Unix® Solution with
86MB Disk, 60MB tape, 2.5MB RAM and better
than VAX 750® floating point for under $9500,
quantity one price including all software. Why
pay three times more for a slower machine?

Bell Technologies Call today for

415-794-5908 / PO Box 8323 quantity
Fremont, California 94537 discounts.

security; but such fine detail can safely be left
to the reader's imagination.

In keeping with the notion of a computer-literate
audience. Walker discusses interprocess communi¬
cation, make, and the C language before getting into
the vi editor and nroff. His discussion of C is
excellent, both as an introduction to the flavor of the
language and for its comparisons with other
languages. His sample programs all have good style.
The largest, 22 lines, is a working program written
to reformat a tape file intended for another system.
His top-down, line-by-line explanation of the pro¬
gram’s use of pointers should help make C compre¬
hensible even to people who have only BASIC
experience.

The use of {...} to bracket compound
statements, rather than the more usual begin
. •. end. and the elision of then are typical de¬
tails that contribute to the rather opaque
appearance of C. Many of my students use the
macro pre-processor facility to define:

^define IF iff
^define THEN){
^define ELSE : |else{

^define FI ;}

(for example), to replace strings of brackets
by more readable keywords. After this they
can pretend they are writing Algol 68:

IF i) j THEN x = y ELSE printf ("error!") FI

I am disappointed that the book is limited to
Version 7 UNIX, and that it often makes compari¬
sons with Version 6. This leaves readers to
determine for themselves whether this or that
problem or feature still exists in System III or
System V. But since Walker’s book is not intended
as a working manual, this is a minor problem.

The book is well edited, as one would expect a
John Wiley & Sons product to be. I did not find any
obvious errors in the examples, and all of the quote
marks were of the proper kind. The only typo I could
find was an instance where the name of the root di¬
rectory was to be displayed on a line by itself, and
only a blank line was produced instead. The
author’s britishisms only occasionally bothered me:
“disc” for “disk” I didn’t mind, but I stumbled over
“transput” for “input/output’’.

Command lines are universally separated from
the text in a display format and set in a clean
Helvetica type. The braces, brackets, stars, and

Circle No. 286 on Inquiry Card

TEXT EDITING

/ x

Another in a series of
productivity notes on
software from UniPress.

/

X

y> ///

'yx/////// XXX/X/Xx/X

Subject: Multi-window,

lull screen editor.

Multi-window, full screen editor

provides extraordinary text

editing. Several files can be edited

simultaneously, giving far greater
programming productivity than vi.

The built-in MLISPm programming

language provides great

extensibility to the editor.

A//

a//

/ / /

[XX

X

New Features:

■ EMACS is now smaller and

faster.

■ Sun windows with fonts and

mouse control are now provided.

■ Extensive on-line help for all

commands.
■ Overstrike mode option to

complement insert mode.

■ New arithmetic functions and

user definable variables.

■ New manual set, both tutorial

and MLISP guide.

■ Better terminal support,
including the option of not using

unneeded terminal drivers.

■ EMACS automatically uses

terminal's function and arrow keys

from termcap and now handles

terminals which use xon/xoff

control. XX
■ More emulation-TOPS20 for

compatibility with other EMACS

versions, EDT and simple

Wordstar emulation.

Features:

■ Multi-window, full screen
editor for a wide range of UNIX,

VMS and MS-DOS machines.

■ "Shell windows"are support¬

ed, allowing command execution

at anytime during an edit session.

■ MLISP programming

language offers extensibility for

making custom editor com¬

mands! Keyboard and named

macros, too.

/X

y

NEW RELEASE

UNIPRESS
EMACS
EDITOR FOR: UNIX /
VMS/MS-DOS'

■ “Key bindings” give full

freedom for defining keys.

■ Programming aids for C,

Pascal and MLISP: EMACS

checks for balanced parenthesis

and braces, automatically indents

and reformats code as needed. C

mode produces template of

control flow, in three different

C styles.

■ Available for the VAX'" (UNIX

and VMS), a wide range of 68000

machines, AT&T family, Pyramid,m

Gould," IBM-PC, ™ Rainbow100+

and many more.

Pficef X x X X / / / /

VAX/UNIX

Binary Source

$995

VAX/VMS $2500 7000

68000/UNIX 395 995

MS-DOS 325 995

For our Free Catalogue and

more information on these and

other UNIX software products,

call or write:

UniPress Software, Inc.,

2025 Lincoln Hwy.,

Edison, NJ 08817.

Telephone: (201) 985-8000.

Order Desk: (800) 222-0550

(Outside NJ). Telex: 709418.

European Distributor:

Modulator SA, Switzerland

Telephone: 413159 22 22,

Telex: 911859.

OEM terms available.
Mastercard/Visa accepted.

trademarks ot UmPress EMACS & MLISP. UnPnss Sottwvt. Ik UNIX. AIM
Bet Laboratories. m/VMS 4 Rainbow 100*. Digital Equipment Corp, MS DOS,
Microsoft Corp. WordStar. MicroPro. Pyramid. Pyramid. Gould. Gould

Circle No. 261 on Inquiry Card

IniPress Software
)bur Leading Source for UNIX''Software

%J FIT TO PRINT

Walker clearly enjoys his subject,

and his pleasure is infectious.

pipes are all clear. My only complaint about the
layout is that there are no chapter references at the
tops of the pages to help readers find their way
around. That is acceptable in a book intended for
regular reading, but headers should be mandatory

in a reference work. Since the author clearly intends
this as an informal introduction, this omission is

forgivable here, but I like to browse and would have
preferred landmarks.

moving back from the middle of the current word to

the beginning of the previous word. That is
inaccurate. A better phrasing would have indicated

that the cursor would move “to the previous first let¬
ter of a word.” The cursor should then be shown
moving to the beginning of the current word.

I hope such nitpicking does not give a false

impression. This is a well-done book.

Xenix by Example

The Staff of M & M Technologies Corporation
M & M Technologies Corporation, 1984

PO Box 237 Herndon, PA 17830

$39.95 (paper)

A Practical Guide to UNIX System V

Mark G. Sobell
577 + xii pp. ISBN 0-8053-8915-6
The Benjamin/Cummings Publishing Company,

Inc., 1985
2727 Sand Hill Road
Menlo Park, CA 94025
$20.95 [paper)

Mark Sobell has updated his excellent book on
Version 7 UNIX to include relevant aspects of
System V. This book is intended to be both an in-
depth tutorial and a reference guide. It succeeds well

on both counts.
One of the best aspects of the book is its use of ex¬

amples to illustrate the actions of different com¬
mands, options, and syntaxes. By giving readers the

text of simple files and showing the various possible
results, Sobell teaches a simple technique for
establishing the behavior of a command without
recourse to a manual. This may not seem like much,
but for a beginner to learn the “try it and find out”
approach can be a major threshold. Sobell makes it
safe, easy, and alluring.

His section on vi is one of the best available.
Visual explanations for essentially two-dimensional
commands make good sense, especially when
they're well done—as they are in this book.

However, despite the fact that Sobell’s new book
is a revision, occasional errors have seeped through.
For instance, he writes, “The b key moves the
cursor backward to first letter of the previous
word.” The accompanying picture shows the cursor

This is a disappointing book. It is marred by poor
editing and inaccurate examples. These problems
are compounded by the fact that the book is also
ugly. The index and table of contents were produced
on a line printer, as were the diagrams—even the
pictures of directory tree structures. The pages are
numbered by chapter, making it difficult to locate
oneself in the book.

The book’s most redeeming feature is a nice
section at the end telling of a week in the life of a sys¬
tem administrator. This piece actually serves as a
useful description of the job.

Because of the book’s orientation towards Xenix

Xenix by Example is marred by poor

editing and inaccurate examples.

on Tandy systems, I suspect it is intended to be
distributed as part of a package. In that form it may
have some usefulness, but I would not recommend
buying it separately for its own merits. It is not a bad
book, but it could easily have been better.
It's in the stars: 0 = kitty litter: 1 = take it if it’s free: 2 = worth the
cover price: 3 = well worth reading: 4 = get the leather-bound edition.

August Mohr is the new book review editor for UNIX
REVIEW. With a background in both computer science
and publishing, Mr. Mohr has combined these interests
while working with the international UNIX users'
organization /usr/group. He was the founding editor of
the newsletter/magazine CommUNIXations, and also

served as the compiler and producer of the group's UNIX
Products Catalog. ■

88 UNIX REVIEW NOVEMBER 1985

A\

A

/ / y

// /

V//Z////,

'//////
/ / / / / / /

//////A
V

//XX / / / >
/

/ Lr

/ /1K/^
/ Jr / ////

'////■
V///

X
/

/

SI/S™ F0877M/V 77/
fl3Sca//S/IS/C-P^S/C
Sl/S family of native mode
compilers for MC68000m
UNIX™ machines. Full ANSI
standard, symbolic debugger
and optimized code generator
with high speed optimization.
Support for IEEE floating point,
both single and double
precision. Sl/S languages give
excellent performance.

/////////
X y y x y / x y y

LATTICE® C CROSS
COMPILER

r X y /
/ y / ,

AN EXTENSIVE LINE
OF PROGRAMMING
LANGUAGES FOR
NATIVE AND CROSS
DEVELOPMENT
WORK

1/, / u4th
FORTH programming language
for UNIX. Largely compatible
with the FORTH-83 standard.
u4th is interactive and allows
fuH UNIX system call interface, Now jncludes BAS/C

nUf^nHP^rd additional back-enda a"d pass-through. Permits C simpler licensing!
primitives and FORTH words to *

Use your VAXm (UNIX or
VMS) or other UNIX machine
to create standard MS-DOSm
object code for 8086m and
186r The Lattice package
includes compiler, linker,
librarian, disassembler and
8087™ floating point support.
Optional SSI Intel-style cross
development tools can be
used in conjunction with
Lattice for native mode 8086
applications.

//////;
AMSTERDAM
COMPILER KIT

/

$995 each
750

7//
195
495

1500

8000
5000

/

be loaded into a new kernel
image. Used frequently in
Artificial Intelligence work.

A package of C, Pascal and
BASIC (native and cross)
compilers for UNIX machines.
Hosted on VAX, PDP-11?
MC68000,™ Z8000m and
8086. Targets for VAX, PDP-11,

SSI Toolkit is a set of Intel-style MC68000,™ 6500m16502™
Z8000, 8086, NSC16032

SSI TOOLKIT yy.

/

/

cross development tools for
UNIX and VMS.™ Package
includes macro cross
assembler compatible with
Intel ASM-8618718811861188,
linker, locator and librarian.

and 8080/Z80m Cross
assemblers provided for
MC6800™ 16805™ /68097
NSC16032 and Signetics
2650™ Package contains
complete sources.

Z

' y\ /

PRICE:
SVS Languages
FORTRAN 77,
Pascal, and C
BASIC-PLUS
u4th

IBM-PCATr
Intel 286/31Om
MC68000
VAX
SSI Toolkit
VAX (UNIX and VMS)
MC68000
Lattice C Cross Compiler

VAX (UNIX and VMS) 5000
MC68000 3000
Amsterdam Compiler Kit

Commercial users 9950
Educational Institutions 995

For our free catalogue and
more information on these
and other UNIX software
products, call or write:
UniPress Software, Inc.,
2025 Lincoln Hwy.,
Edison, NJ 08817.
Telephone: (201) 985-8000.
Order Desk: (800) 222-0550
(Outside NJ).
Telex: 709418.
European Distributor:
Modulator SA, Switzerland.
Telephone: 413159 22 22,
Telex: 911859

OEM terms available.
Mastercard and Visa accepted.

yy/////

y////XXX/

/

/

y y
//X/x x//

//////
'////////
y///

/

///////
// /// A

V ;//// /

y///

//y//

y/y/j

trademarksoA UMX. AI&tBelLaboraKwes. VAX VMS.andPDP n.DvUEtve
mentCorp. 8066/8087/186/286/310. Intel Corp. MSDOS. Microsoft. Lathee. Lat
lice Inc. MC6000.6500.6502.6800.6805,6809, Motorola Corp. NSC16032. Na
tnnal SemcorxJucfty Corp. Sqnetcs 2650. Signetics Cup. SVS. Sicon VMy Soil
wait. Ik

tJnlwess Softujore
four Leading Source for UNIX Software

Circle No. 258 on Inquiry Card

DEVIL'S
ADVOCATE

Setting the sights

by Stan Kelly-Bootle

I have been asked to keep you
updated on my exciting chase
after Ty Cobb’s lifetime hit total.
My attempt will obviously chal¬
lenge Pete Rose’s record also, but
that is entirely coincidental. Re¬
lax, Peter my dear boy, it’s Tyrant
R. Cobb I’m after.

For some time I’ve considered
tackling Cobb’s achievements in
non-Wrigley-type fields, off-the-
plate as it were. Take Ty Cobb’s
record in, say, MC68000 assem¬
bly language programming. You
needn’t look it up; Cobb’s coding
was unbelievably ineffective at all
levels, pure Bugsville—0 for
FFFF, man. There’s no fun in
beating such an abysmal per¬
formance.

No, the improbable dream
should be made of sterner stuff,
as Hamlet once remarked to Bru¬
tus. Why drive up Mount Tamal-
pais when there are the Eigers to
be scaled? Why grovel in RPG
when the perfect payroll cries out
for Lisp? You can test the eerie
intelligence of Lisp by typing:

(GET STAN RAISE)

which sadly but correctly re¬

turns: NIL.
So here is the challenge I have

taken on amidst a sea of doubting
sniggers:

Ty Cobb's record:

Total Hits_4191

Stan “Mr. November’’ Kelly-Bootle:

Last Game_D-5

Total Hits_0

Hits still needed to tie Ty_4191

Hits still needed to pass Ty_4192

Hits still needed

to completely humiliate Ty _8192

You will be relieved to learn that I
plan to retire at this very point,
just as my 11 -bit register over¬
flows!

Be sure to follow my progress,
reported exclusively here in UNIX
REVIEW every month; you will
definitely not find it in the so-
called Sporting Press. (I leave you
to draw your own conclusions;
just remember that Pete Rose’s
first at-bat also attracted very
little attention from these same
smart-alec jockscribes.)

I am not the only Quixote on
the block! Indeed, I am much

encouraged by letters from Doro¬
thy D’Attoma, the lively PR per¬
son for Multi Solutions Inc., cre¬
ators of the S1 operating system. I
have a theory that SI stands for
Sisyphian #1, indicating that
Dorothy has one hell of an uphill
assignment, namely dislodging
UNIX from the top of the heap.

I recall selling Univac’s Exec8
against IBM’s OS360 in those
carefree days of core. (By the way,
whatever happened to plated-
wire memory? Sure, it was three
bucks-a-byte, but very pretty.) If
we were asked if Exec8 had a
certain feature or property, we
would ponder to ourselves if such
a feature or property seems sensi¬
ble and desirable. If so, our an¬
swer would be an enthusiastic
affirmative: “Yes, sir. What’s
more, it’s transparent to the
user.’’ We would then rush off a
cable to Sperry HQ in Bluebell, PA
pleading for enhancements.

Another historical curiosity
springs to mind, although it pre¬
dates my own personal involve¬
ment. During the 1840s, the
British steam locomotive rail sys¬
tem had evolved haphazardly
with private companies building
networks with different track
widths. Each, of course, had con¬
vincing arguments why a 5-foot
6-3/4 inch gauge was either a
God-given boon or a pitiful, dia¬
bolical trap. Certainly those with
trains and rolling-stock running

90 UNIX REVIEW NOVEMBER 1985

on wheels 5-foot 6-3/4 inches
apart had difficulty admitting the
sanity of anyone who sang the
praises of a 7-foot 1-inch wide
track.

Nevertheless, the greatest en¬
gineer of the day, Isambard King¬
dom Brunei (1806-59), proved
beyond doubt that the wider track
offered a safer, more comfortable
ride. Further, he went ahead and
built the Great Western Railway
on this basis. For a few years,
trains were actually designed
with adjustable wheels, allowing
them to make the journey from,
say, Norwich to Bristol with two or
three stops for wheel adjustment
(preferable to the alternative “All
Change!” for goods and passen¬
gers). Alas, poor Brunei was just a
little late; the narrow gauge,

devised before all the design
implications were known, be¬
came the prevalent, unshakeable
standard.

This raises the obvious ques¬
tion (if you like simplistic analo¬
gies): is UNIX running on the right

Is UNIX running on the

right lines for the

wrong reasons?

lines for the wrong reasons? Or
vice versa? Who’s on first? Not
me. I’m still looking for the first of

those damned elusive 4191 hits.
Newsflash: T. Boone Pick has

taken over AT&T and the Univer¬
sity of California at Berkeley. His
operating system has been de¬
clared the ad hocissimus stan¬
dard. All Change!

Damn, now where did I put my
old BASIC manuals?

Liverpool-born Stan Kelly-Bootle
has been computing, on and off, at

most levels since the pioneering
EDS AC I days in the early 1950s at
Cambridge University. After graduat¬
ing from there in Pure Mathematics,
he gained the world's first post¬
graduate diploma in Computer Sci¬
ence. He has authored The Devil's DP
Dictionary and co-authored Lem Yer-
self Scouse and The MC68000 Soft¬
ware Primer. ■

Q-Calc is an extraordinary _r_

for UNIX including extensive math
and logic facilities, comprehensive

Price:
//
VAX, Pyramid, AT&T

(with graphics) 3500
programs via pipes, filters and sub- MC68000™ 750_
processes. Data can be processed
interactively by UNIX. Source Code Avail
■ Q-Calc profile mechanism allows

the user to store default information, For our Free Catalogue and more
as well as support for terminal-specific information on these and other UNIX
profiles. Uses termcap. software products, call or write:
m Graphics for bar and pie charts. ‘ ,~'n— r'-*-—

Several device drivers supported,
m New Features of Version 3.2

. new string operator,
bind-to-key, and more.

.dr the VAX”, Sun”,
Masscomp”, AT&T 3B & 7300 Series,

Pyramid”, Plexus”, Gould”, Cadmus”,
\ted Solutions”, Cyb”, IRIS”,

fan”, and many more.

Trademarks ot: UNIX. AT&T Bell Laboratories; VAX. Digital Equipment
Corp; Sun. Sun Microsystems; Masscomp. Masscomp; CYB. CYB
Systems. Plexus, Plexus Computer; Gould. Gould, Pyramid, Pyramid.
Integrated Solutions. Integrated Solutions; IRIS, Silicon Graphics,
Cadmus. Cadmus Computer; Caltan. Callan Data Systems; MC68000.
Motorola Corp

Circle No. 281 on Inquiry Card

/ / /

IniPress Software
y&t/r Leading Source for UNIX^Software

Note: only the meanings most
pertinent to scientific and real¬
time programming have been
included in this listing.

adaptive control—a regulation
that alters the mode, speed, or
type of system response accord¬
ing to changing circumstances or
results. The use of adaptive con¬
trols is desirable in many kinds of
real-time control systems, par¬
ticularly robotics.

AP—an abbreviation for “array
processor" (see below) or “at¬
tached processor" (also below).

array processor—a special com¬
puter that acts as an assistant
to another computer system by
performing mathematical opera¬
tions on arrays of numbers. Ar¬
ray processors are widely used in
some scientific applications be¬
cause they are much more ef¬
ficient at performing repetitive
calculations than are general-
purpose computers. UNIX offers
no native support for array pro¬
cessors, but these machines have
been integrated successfully into
many UNIX systems.

attached processor—any exter¬
nal but tightly-linked processor
designed to speed the processing
of specialized types of data. Ex¬
amples include array processors,
communications processors, vid¬
eo processors, database engines,

THE UNIX
GLOSSARY

Real-time vernacular

by Steve Rosenthal

and the like. Although UNIX does
not include any explicit support
for attached processors, the sys¬
tem’s general support for multi¬
tasking often eases the job of
including such units.

backend processor—a special¬
ized processing unit added to a
computer system to speed the
handling of certain types of data.
It is called a “backend” unit
because the ordinary user doesn’t
see or interact with it; all instruc¬
tions pass through the main com¬
puter system. Array processors
and database machines are the
backend processors most com¬
monly encountered in the UNIX
community.

bang-bang controller—a con¬
troller with only one level of
response, which is used when a
monitored condition exceeds set

limits. An example would be a
furnace that turns on fully only
when the temperature drops be¬
low 60 degrees and that turns off
completely only whenever the
mercury rises over 72. Bang-bang
controllers are simpler to design
and build than proportional con¬
trollers—which can order select¬
ed levels of response—but they
often are less efficient.

bounded interrupt latency—a
quality possessed by systems that
respond to interrupts within a
specified maximum amount of
time. Bounded interrupt support
is necessary for many types of
real-time process control. UNIX,
however, normally cannot guar¬
antee such a limit, so most sys¬
tems responsible for process con¬
trol rely on modified UNIX kernels
or resort to specially engineered
precautions. See also determin¬
istic interrupt latency.

computational element—one of
the smaller processors in a multi¬
processor system. Computational
elements are especially common
in systems using large numbers
of processors. Also called a “pro¬
cessing element”.

contiguous disk storage—the
assignment of logically-sequen-
tial disk sectors to physically
adjacent areas in preference to
using an interleave factor to place
them in intervening areas. Con-

92 UNIX REVIEW NOVEMBER 1985

tiguous disk arrangements make
for faster data storage, which is
often necessary for real-time sys¬
tems. However, they also require
the use of a high-performance
disk controller, and they may
require that the system process
data fast or defer processing alto¬
gether because of the limited time
available between the reads or
writes of successive sectors.

critical resource—in multitask¬
ing computer systems, “critical
resource” refers to a device, area
of memory, or section of code that
cannot be shared with other
tasks. For example, two different
tasks cannot be allowed to write
to the same area of the terminal,
since messages from one might
overwrite or obscure messages
from the other. Similarly, two
tasks cannot be allowed to per¬
form an update on a transaction
file at the same time, since the
result of one operation might not
be interpreted properly by the
other. The management of critical
resources is one of the most
important jobs for a multitasking
operating system. If done ineffi¬
ciently, total system speed may
slow to little more than the rate
at which jobs could be done se¬
quentially.

data reduction—the extraction
of information from raw data by
the application of arithmetic and
statistical transformations, or by
the use of other mathematical
methods. One of the goals of
many real-time systems is to do
any necessary data reduction at
rates sufficient to allow process¬
ing to keep up with the arrival of
data—by using a small amount of
buffering if necessary. UNIX sys¬
tems are often used for data
reduction, especially by micro or
minicomputers that feed main¬
frames with “cooked data” ready
for further analysis.

deterministic interrupt laten¬

cy—a defined—or computable—
interval between the time an
interrupt signal arrives and the
time it is serviced. Deterministic
latencies, or at least bound laten¬
cies (where the maximum delay is
known), are necessary for most
types of real-time control sys¬
tems. Deterministic interrupt la¬
tencies normally are provided
only on systems designed for
process control or very simple
use.

disk striping—a technique for
increasing disk system transfer
rates by using several disk drives
in parallel to record and play back
some of the bits in a multibit data
word. By using eight disks, for
example, transfer speeds can be
increased by a factor of eight over
the rates offered by the single¬
disk solution. Disk striping also
raises the effective maximum vol¬
ume size, since data is evenly
spread between multiple disks.

FLOPS —an acronym for “float¬
ing point operations per second”,
more commonly measured nowa¬
days as “megaflops” or “giga¬
flops”. Because floating point cal¬
culations are more time con¬
suming than ordinary integer
arithmetic, and since they are so
commonly used in scientific and
control applications, a megaflops
rating is often more significant
than a MIPS (million instruction
per second) measurement.

GPIB—initials that stand for
“General Purpose Interface Bus”,
a connection often used in refer¬
ence to the linking of electronic
instruments for scientific testing
and industrial work. The GPIB
bus, which provides for “talk¬
ers”, “listeners”, and “control¬
lers” on an 8-bit wide parallel
bus, is most frequently driven by
a simple dedicated system, but
some UNIX-based minis and mi¬
cros have also been called into
service. GPIB is the IEEE 488

standard, also known as HP-IB.

host—in a computer system
made up of a main processor and
one or more attached proces¬
sors (such as array processors),
“host” refers to the main pro¬
cessing unit. In some configura¬
tions, the host might be a UNIX-
driven system with the other
processors treated as peripherals.

interrupt-driven—said of sys¬
tems or software that respond to
signals marking events. The al¬
ternatives would be to execute
routines at fixed intervals or
detect inputs by regularly moni¬
toring input lines. The UNIX
kernel is interrupt-driven.

interrupt handler—a routine
called in response to a signal -.

UNIX
JOBS

REGISTRY
National registry of candi¬
dates and jobs in the Unix
field. Please give us a call;
send a resume; or request a
free Resume Workbook &
Career Planner. We are a
professional employment
firm managed by graduate
engineers.

800-231-5920
P.O. Box 19949, Dept. UR

Houston, TX 77224
713-496-6100

Scientific Placement, Inc.

Unix is a trademark of Bel! Labs

Circle No. 284 on Inquiry Card

UNIX REVIEW NOVEMBER 1985 93

U GLOSSARY

marking an internal or external
event requiring attention. UNIX
has many interrupt handlers
built into the kernel, but others
often are added to respond to
specific hardware configurations.
Efficient interrupt handling and
the assurance that delays will not
exceed a maximum time are par¬
ticularly important in process
control work.

low-level parallelism—said of
computer architectures that keep
multiple copies of certain re¬
sources inside the CPU, in con¬
trast to the normal parallel strat¬
egy of providing complete mul¬
tiple processors. The low-level
parallelism approach is becoming
popular for RISC (“reduced in¬
struction set computers”).

MIPS—short for “million in¬
structions per second”, a mea¬
surement for specifying the speed
at which a computer or system
can execute programs. Naturally,
since some instructions execute
faster than others, the particular
benchmark used to arrive at this
figure is significant.

monte carlo analysis—a tech¬
nique for assessing the perfor¬
mance or operation of systems.
Based on statistical measures of a
large number of events that each
use a random starting value or
position, monte carlo analysis is
widely used in simulation work.

number crunching—the infor¬
mal name for the processing of
large amounts of numerical data,
especially data in floating point or
other complex forms. Computers
designed for number crunching
are likely to be different in archi¬
tecture, software, and peripher¬
als from those designed for soft¬
ware development or commercial
use. UNIX, of course, traditionally
has been used for software de¬
velopment.

optimizing compiler — a pro¬

gram that translates a high-level
language into machine language,
and—as part of that transla¬
tion—takes steps to increase the
efficiency of the code. Typically,
this involves making one or more
extra passes during the transla¬
tion to determine how registers
and other scarce system re¬
sources might best be used.

overrun—a loss of data that
occurs when a receiving system
accepts a new signal before it has
finished receiving an earlier one.
UNIX systems used in data-col-
lection applications are prone
to occasional overruns because
their interrupt processing can
take varying amounts of time.
The buffering of inputs helps, but
good design generally calls for
some kind of error checking or
data recording if every input is
expected to be crucial.

parallelization — the decompo¬
sition of a computational task
into portions that can be han¬
dled simultaneously by different
processors. Unlike vectorization,
parallelization does not imply
that all apportioned tasks will be
identical.

physical memory—the amount
of memory actually present in
directly-accessible form. See vir¬
tual memory.

poll—a check for a message or
any other call for attention. Some
simple microcomputer systems
still poll their input ports to check
for inputs, but most systems now
are interrupt-driven instead.

real time—a system designed to
respond to outside events, and to
service them as need be. Depend¬
ing on the needs of the equipment
or processes being controlled,
this may require response speeds
as fast as a few microseconds.

An older meaning of real time
was used to describe those com¬
puter systems fast enough to be

interactive, in order to distin¬
guish such systems from those
that performed batch processing.

RISC —an acronym for “reduced
instruction set computer”, a type
of processor architecture that at¬
tempts to achieve faster process¬
ing by implementing arrays of
processors each with only simple
instructions. RISC machines are
becoming increasingly popular
for scientific and engineering
applications.

vectorization—the division of a
computational task into many
identical subtasks that can be
performed by an array processor
or some other processing system
capable of handling multiple
similar operations at the same
time. Not all problems are suit¬
able for vectorization, but—with
the proper hardware—those that
are can be run many times faster.

virtual memory—a feature that
simulates large amounts of phys¬
ical memory by swapping data
back and forth between main
memory and a disk storage sys¬
tem. One of the principal aims
behind the development of the
Berkeley distribution of UNIX
was to add support for virtual
memory to the existing version of
Research UNIX. Many scientific
applications—particularly those
involving graphics, image pro¬
cessing, and data reduction—
require the large memory address
space that virtual memory pro¬
vides.

If you have comments, ques¬
tions. or corrections to offer,
please send them to Rosen¬
thal's UNIX Glossary, Box 9291,
Berkeley, CA 94709.

Steve Rosenthal is a lexicogra¬

pher and writer living in Berkeley.
His columns appear regularly in six
microcomputer magazines. ■

94 UNIX REVIEW NOVEMBER 1985

1986 Winter USENIX Technical Conference
Marriott Hotel — City Center, Denver, Colorado

January 15-17,1986
TUTORIALS
For each topic area, there will be related tutorials
on adjacent days, concurrent with the other
technical sessions. Tutorials of general interest
will also be held. Possible topics include:

• Ada Programming Language &
Environment

• Window System Implementation
• SNA Networking & UNIX*
• UNIX System Internals
• UNIX Interprocess Communication,

and others

Tutorial speakers will be highly qualified
technical experts who are able to give an
indepth presentation.

THE SPONSOR
For the latest in UNIX applications and research,
people look to USENIX, a not-for-profit association
of individuals and institutions dedicated to
fostering the development and communication
of UNIX and UNIX-like systems and the C
programming language. USENIX sponsors
technical conferences, produces and distributes
a newsletter and serves as coordinator of a
software exchange for appropriately licensed
members.

THE TECHNICAL SESSIONS
The 1986 Winter USENIX Conference will consist
of workshop-oriented technical sessions in
three topic areas:

WINDOW ENVIRONMENTS AND UNIX
WEDNESDAY, JANUARY 15, 1986
A thorough exploration of the design and
integration of UNIX-based window systems
and their applications.

UNIX ON BIG IRON
THURSDAY, JANUARY 16,1986
An analysis of issues raised by the imple¬
mentation and operation of UNIX on very
large, powerful mainframes, including
those with multiple processors.

ADA AND THE UNIX SYSTEM
FRIDAY, JANUARY 17, 1986
An examination of the Ada language and
its relationship to the UNIX system.

For complete conference information, call:
(213) 592-3243 or (213) 592-1381

Or write:
USENIX Conference Office
P.O. Box 385
Sunset Beach, CA 90742

Circle No. 234 on Inquiry Card

RECENT
RELEASES

MATURITY COMES

WITH AGE

Western cultures exalt youth
and often regard advancing age

with horror. Eastern cultures,

though, are known for placing

value in age, considering that
with experience comes maturity
and wisdom. The computer in¬
dustry usually takes a Western
perspective when it comes to
software, thinking that oldy soft¬
ware must mean moldy software.
Perhaps UNIX teaches us to take
a lesson from the East—the sys¬
tem is old, but it has been main¬
tained over the years to serve

current computer users’ needs.
Another piece of software, Mac-
syma (“macksimma”), is making
the same claim.

Since it has been under con¬

tinuous development at the Mas¬

sachusetts Institute of Technol¬
ogy from the late ’60s to 1982 and
from 1982 to the present at
Symbolics, Inc., Macsyma repre¬
sents about 150 programmer-
years of software design.

Symbolics now has released an
enhanced version of Macsyma.
As a computer algebra system
used to assist scientists and engi¬
neers in solving complex math¬

ematical problems, it boasts more
than 450 licensees worldwide,
making it the most widely used
system of its kind. It is capable
of solving integration, differen¬
tiation, Taylor series, matrix
manipulations, tensor analysis,
differential equations, and other

mathematical problems requiring
advanced calculus capabilities.
The new release incorporates
code developed by Macsyma users

working in product design and

systems analysis applications
areas as diverse as acoustics,
VLSI circuit design, and econ¬
ometrics.

Macsyma and UNIX, however,

have more in common than just
their age and diversity of use. Use

of Macsyma contributed greatly to
Lisp being ported and ultimately
integrated into 4.2BSD. Though
initially available only on the non-
UNIX-running Symbolics 3600

family of computers, as of this
month the new version of Mac¬
syma can be licensed for use on
Sun-2 micros and will soon be

available on other UNIX-based
workstations. The package is also
used on minis, including DEC
VAXen.

Macsyma is marketed exclu¬
sively by Symbolics. For a work¬

station, a commercial license is
$7500, and a license for govern-

ment/non-profit organizations is
85250. For a VAX, a commercial
license costs $15,000, a govern¬
ment/non-profit license, $6000.

On a VAX, Macsyma requires
1.75 MB of memory for the first
user and .75 MB for each simulta¬
neous user. About 10 MB of disk
storage are required to store Mac-

syma’s executable libraries.
Symbolics, Inc., 11 Cambridge

Center, Cambridge, MA 02142.
617/577-7350.

Circle No. 282 on Inquiry Card

RTI AT MIT, TOO

An ongoing endeavor at MIT of
interest to UNIX users is Project
Athena—a major, campus-wide,
UNIX-based program designed to

integrate modern computer and

communications capabilities in¬
to all phases of the education¬
al process. Athena’s principal

goal is to help students learn

more creatively in a wide range

of disciplines, and to help im¬
prove and refine MIT’s teaching
methods.

Participating in this project
is Relational Technology, Inc.
(RTI), which announced that its
Ingres relational database man¬
agement and application develop¬
ment system has been selected
as the foundation data manage¬
ment product for Project Athena.

RTFs principal product, Ingres
is sold complete with a collection
of visual programming tools for
accessing and displaying data
and for building online interac¬
tive applications. These tools
are designed to allow users to
prototype and develop multi¬

user, shared database applica¬
tions without conventional pro¬
gramming. Multiple levels of re¬
port writing and graphics are

available. RTFs networking tool,
Ingres/NET, gives users corpo¬
rate-wide access to remote data¬
bases located on any computer in
a network.

Relational Technology, Inc.,
1080 Marina Village Parkway,
Alameda, CA 94501. 415/769-
1400.

Circle No. 280 on Inquiry Card

HARRIS HIGH ON HCX

Harris Corp. has announced a
UNIX-based line of superminis
that make use of 32-bit architec¬
ture. Entitled HCX (“Harris Com-

96 UNIX REVIEW NOVEMBER 1985

puter for UNIX”), the series
makes its debut with the model
HCX-7, which according to the
Whetstone benchmark achieves
7.1 MIPS performance.

The HCX-7 operates under
System V with Berkeley enhance¬
ments, and features reduced in¬
struction set computer (RISC) in¬
novations (160 total instructions)
that typically require one ma¬
chine cycle of 100 nanoseconds to
execute. It comes with a five-
board CPU with Schottky bit-slice
technology, 32-bit addressing,
and three-stage instruction pipe¬
lining. This model supports up to
32 MB of memory.

The base configuration price
for the HCX-7 is $225,000, which
buys 2 MB of main memory, a
battery backup unit, a communi¬
cations interface for 27 termi¬
nals, and a 32-user UNIX license.
Adding 2 MB more of memory, a
floating point processor, and an 1/
O expansion cabinet raises the
price to $275,000.

Harris Corp., Computer Sys¬
tems Division, 2101 W. Cypress
Creek Rd., Ft. Lauderdale, FL
33309-1892. 305/973-5125.

Circle No. 278 on Inquiry Card

AH, SO, UNIX

AT&T and UniSoft Systems of
Berkeley, CA, have entered into
an agreement whereby the com¬
panies will jointly develop an
interface between Kanji applica¬
tions and System V running on
AT&T’s 3B series of computers.

AT&T UNIX Pacific Co., Ltd.
(AT&T’s UNIX software subsid¬
iary in Japan), UniSoft, Nippon
UniSoft (UniSoft’s Japanese re¬
presentative), and Argo 21 (a
Japanese software house helping
in the effort) will be working in
Tokyo on a 3B2/400 to develop
the interface, which should be
completed by early 1986, and
AT&T plans to license the soft¬
ware in source code worldwide

Break through the PC/UNIX* barrier!

At last. A product that guarantees clear passage from IBM PC’s and
PC-Compatibles to UNIX — without unnecessary roadblocks.

DaTapaSS is quick and simple. No clutter, no confusion: Just a direct
path to the features you need most. Features like terminal emulation.
Full access to DOS functions. Error-free uploading and downloading
across public networks, LAN’s, or phone lines. Automatic restart and
recovery of interrupted transfers. Key-selectable signon sequences.
Softkeys you can program from DOS or UNIX to automate repeat
transactions. It even lets you talk to other PC’s . . . and Honeywell
mainframes, too.

Interested? Give us a call for more information about DaTapaSS:
your best route to error-free PC-to-UNIX communications.

DTSS Incorporated
Buck Hoad • Box 70 • Hanover, NH 0075;") • 000 040-0000

A Subsidiary of Metropolitan Life Insurance Company

* UNIX is a trademark of AT&T Bell l<al>oratnrics. IBM is a
trademark of International Business Machines Corporation.

Circle No. 272 on Inquiry Card

FORTRAN 77
COMPILER INCLUDES FULL SUPPORT FOR MOTOROLA’S

MC68020/68881
• Full ANSI 77 implementation

• Full Screen Source Level Symbolic Debugger

• Unix and C Interface (Unix is a trademark of AT&T)

• Generates 68000 and 68010 Code

• Support for NS32081 and SKY FFP Math Hardware

ALSO AVAILABLE 68020/68881 MACRO ASSEMBLER

• 100% Motorola Compatible - Includes C Interface

• 2X to 20X Faster Than Most Assemblers

abssift
SCIENTIFIC/ENGINEERING
SOFTWARE 4268 N. Woodward

Royal Oak. Michigan 48072

(313) 54V-7111 • TX 23S608

Circle No. 279 on Inquiry Card

UNIX REVIEW NOVEMBER 1985 97

U RECENT RELEASES

MULTIUSER
SYSTEMS?

USE THE MULTIPORT " SOLUTION

• Connect up to 8 terminals to an
IBM PC for under $100 per

connection

• Network PC's together using inex¬
pensive serial ports instead of high-

priced cards

• Kits compatible with XENIX, PICK,
BOS, THEOS, VENIX/86, PC-SHARE,

& EasyLAN

FREE Technical Assistance!
Call (615) 254-0646

RRNET
The Multiuser Experts

476 Woodycrest Ave Nashville. TN 37210/TELEX 332762

Circle No. 271 on Inquiry Card

ASSEMBLERS
We will support you on over 20 UNIX
and Xenix based machines. Targets:

Fairchild F8/3870

Hitachi 6301, 6305, HD64180

Intel 8041, 8048, 8051, 8080
8086 family

Motorola 6800, 6801, 6805, 6809
68HC11, 68000 family

NSC 800

RCA 1802

Rockwell 6502/65C02

Texas Inst. TMS7000

Zilog Z8, Z80

UNII4*)RE™
SOFTWARE DEVELOPMENT SYSTEMS, INC.

3110 Woodcreek Drive
Downers Grove, IL 60515 U.S.A. (312) 971-8170

England: Unit C, Ltd. (0903) 205233

UNIX is a Trademark of AT&T Bell Labs

Xenix is a Trademark of Microsoft

Circle No. 273 on Inquiry Card

and offer binary versions on the
3B line through Japanese distrib¬
utors. AT&T UNIX Pacific will
coordinate the project while Uni-
Soft will develop most of the
software.

The project’s purpose is not to
accommodate translation per se,
but to allow Japanese end users
to make use of UNIX. Japanese
users will be able to interface
with System V in English using
Roman characters or in Japanese
using Kata-Kana characters,
a phonetic alphabet commonly
used in Japan. To support Japa¬
nese language input, the inter¬
face will allow a user to access
an electronic dictionary of sever¬
al thousand graphics-oriented
Kanji characters. After the user
has typed in text in Roman or
Kata-Kana characters using a
conventional keyboard, UNIX
software will check the online
dictionary and return with one or
more appropriate Kanji charac¬
ters. The user then will be able to
select the appropriate character
depending on the context of the
sentence.

Save Time and Money
on Data Entry

Use ZIPLIST to automatically
look up city, state and county infor¬
mation based on zip code. Table of
48,000 zips allows significant sav¬
ings on data entry, error correc¬
tions and file maintenance. This set
of floppy disks, including easy in¬
structions, is just $149. Most
popular 5lA" and 8” formats are
available. Hard disk recommended.
Call or write for free information.

DCC Data Service
1990 M Street, N.W. Suite 610

Washington, D.C. 20036

Call toll-free 1-800-431-2577

In DC & AK 202-452-1419

Circle No. 274 on Inquiry Card

UniSoft already has a Kanji
interface on its UniPlus version of
UNIX, according to Robert Acker¬
man, UniSoft senior vice presi¬
dent. “This project is of special
note because the technology in¬
volved in bringing a Kanji in¬
terface of UNIX to Japan can
be translated [so to speak] to
other such graphics-oriented al¬
phabets,” he said.

UniSoft Systems, 739 Allston
Way, Berkeley, CA 94710. 415/
644-1230.

Circle No. 277 on Inquiry Card

MUMPS IS SPREADING

Massachusetts General Hospi¬
tal is famous for many contribu¬
tion to the medical world, but its
contribution to the computer pro¬
gramming world is gaining pop¬
ularity, too. MUMPS, that is,
Massachusetts General Hospital
Utility Multiprogramming Sys¬
tems, is an ANSI standard
language developed at the pres¬
tigious institution under govern¬
ment contract. Motorola has
announced that it is offering the
Micronetics Standard MUMPS
(MSM) with its Series 6000 and
2000 UNIX-based systems. These
two series consist of 32-bit ma¬
chines based on the Motorola
68010 processor and running
Motorola’s version of System V
with Berkeley enhancements.

MUMPS offers software devel¬
opment and debugging tools in¬
cluding good trace capabilities
and a program editor; it also
executes like an interpretative
language. Now available, the
MUMPS licensing fee starts at
$1995.

Motorola Four-Phase Systems,
10700 N. DeAnza Blvd., Cuper¬
tino, CA 95014. 408/255-0900.

Circle No. 276 on Inquiry Card

98 UNIX REVIEW NOVEMBER 1985

UNIX™ APPLICATION
DEVELOPMENT

TODAY is far more than the
awkward collection of tricks and
tools that are often labelled
“4GL”. TODAY provides a
COMPLETE application
development environment that
will revolutionize the way you
develop and maintain applications.
No UNIX* systems knowledge
is necessary.

Let’s put it frankly: developing
an application is a costly pro¬
position. You’ll need a highly
skilled team of designers, analysts
and programmers, and several
man-years to get things off the
ground. And that’s not to mention
the on-going costs of documenta¬
tion, customization and
maintenance!

TODAY tackles these problems
through a new methodology with
high performance architecture
and a comprehensive range of
features. It’s so quick and easy to
use that TODAY developers can
do the whole job—design,
analysis, development and
documentation.

TODAY provides a compre¬
hensive range of features that
keep application building easy
while optimizing development
resources:
• Powerful recursive logic and

Decision Tables
• Synonyms, Menus, Prompts,

Helps and Defaults for
streamlined definitions

• Screen Painter
• A Report Generator which

includes a Painter

Cure for Backlogs
Induced by 3GLs

in EDP Departments,
Software Houses

& Others

Push-button Self¬
documentation
Audit Trails
Source-code security through
run-time only configurations

• Developed Applications
instantly portable across
UNIX* systems

Because definitions are
Dictionary-based, any changes
are easily made in one central
location. A key feature,
“tailoring” lets you alter an
application — perhaps to
customize it for a particular site
or user — without affecting the
original version. If required,
applications can be set up as
Models (Prototypes) and later
enhanced to grow and change
with the business. Tailoring
versions is the perfect solution for
quickly generating multiple
applications based on one Model.

TODAY runs under UNIX* or
UNIX*-compatible operating
systems on super-mini down to
micro business computers using
any of a range of databases. And
if that's not enough, TODAY is
backed by 14 man-years of
research and development and
the confidence of users who are
breaking time zones in software
development.

See us at Comdex, Nov. 20-24,
Booth #434

bbj Computer Services, Inc.
2946 Scott Blvd.
Santa Clara, CA 95054
Telephone: (408) 727-4464

Circle IMo. 259 on Inquiry Card

Unix is a trademark of A T & T Bell Laboratories Inc. TODAY Copyright (cj> bbj Computer Services Pty Ltd Melbourne. Australia July 1983

THE S SYSTEM

THE S SYSTEM
Continued from page 59
translate users' requests from the terminology of
specific applications into the S expressions that
generate the results.

Less frequently, more ambitious projects have
included user-written S functions or interfaces
between S and other large application systems. The
relative simplicity of writing S macros means that a
new system tailored to a particular user community
can be written with a fraction of the programming
effort required for a corresponding project using a
general programming language. Also, the system
development effort grows naturally (often uninten¬
tionally at first) out of direct use of S to solve user
problems; there is no large initial investment in
programming before any of the proposed uses can be
tested and evaluated.

One of the more difficult tasks in user training
has been convincing Fortran programmers that it is
ordinarily not necessary to write explicit loops to
operate on collections of data. Most non-program¬
mers, however, seem to have little difficulty with the
implicit iteration provided by S.

New from Image Network!

Documenter’s Workbench®
for laserprinters and typesetters.

DWB is troff, eqn, tbl, and pic
interfaced to raster printing devices.

Our existing XROFF product allows DWB
to work with the following systems and printers:

• System III
• V7
• VAX/VMS
• Amdahl/UTS
• Xenix
• UNOS

• Xerox 2700, 3700
• Xerox 8700, 9700

• System V
• Berkeley 4.2
• VAX/Ultrix
• IBM/PC MSI DOS
• Eunice
• Uni Plus+
• DEC LNOIs, LN03
• APS-5 typesetter
• Compugraphic 8400

Use DWB with a laser primer to make high quality
documents or to make proof copies before typesetting.

Call or write to tell us your printing requirements!

Image Network, (4i5) 967-0542
448 Middlefield Road, Mountain View, CA 94043

*Docu«cwtw*s Workbench is a trademark »f AT& I Bell l-ahoraioncv_

Circle No. 285 on Inquiry Card

Specific user suggestions and our general recog¬
nition of the pattern of use have contributed many
of the enhancements in S. An early user suggestion
was the inclusion of a right-facing assignment
arrow (->) for the occasion when one decides to save
a result after typing a long expression. Our use of
tools like syntax-driven parsing makes such
changes easy. Interestingly, the interactive use of S
in this case has direct implications for the syntax.
Other enhancements that respond to user needs
include: a simple mechanism to edit and rerun
expressions after errors; a “diary" feature to
provide a history of the expressions executed during
a session; tools to help users create online documen¬
tation for their macros, datasets, and new S
functions; and facilities for moving large collections
of S datasets among different machines in a
portable way. We have also provided a mechanism
for running S noninteractively for large or repetitive
analyses, and a technique for creating device¬
independent graphics metafiles that can be plotted
later on interactive devices or batch devices. The
ability to provide such facilities with only a limited
expenditure of our own time derives from our
modular, tool-oriented design, and from the similar
orientation of the UNIX environment.

FUTURE PLANS

Future plans for S concentrate on improving the
human interface, particularly for use with the new
generation of workstations. We have made quite a
bit of progress in utilizing the windows, mouse, and
processor of the Teletype 5620 Terminal to produce
dynamic graphics displays. These features also
allow design of non-programming interfaces to data
analysis, with greater flexibility and more sophisti¬
cated user support than was previously possible.

Richard Becker is a Member of Technical Staff in the
Statistics and Data Analysis Research Department at
AT&T Bell Laboratories. His research interests include
system design, graphics, data analysis, and worksta¬
tions. He and John Chambers are coauthors of S: An
Interactive Environment for Data Analysis and Graphics
and Extending the S System.

John Chambers is Head of the Statistics and Data
Analysis Research Department at AT&T Bell Laborato¬
ries. His research interests include system design,
graphics, numerical analysis, symbolic computation,
and expert software. He is the author of Computational
Methods for Data Analysis and coauthor of Graphical
Methods for Data Analysis. ■

Copyright 1984. Association for Computing Machinery. Inc., by

permission.

100 UNIX REVIEW NOVEMBER 1985

REAL-TIME UNIX
Continued from page 67

AST to real-time processes. The
work on the scheduler and the
memory-locking primitives per¬
mits response to be sufficiently
“instantaneous” and predictable
for a wide class of real-time
applications. In UNOS, the use of
eventcounts alone solves the
same problems.

THE UNWRITTEN
REQUIREMENT

Our discussion of the seven
requirements would be hollow,
however, if we didn’t consider the
practical requirements of the
marketplace. Most current real¬
time programs are written in
either assembly language or some
variant of Fortran, so the market
demands that these programs
be kept working for as long as
possible.

In the case of assembly lan¬
guage programs, little needs to be
done. To a large extent, C already
is doing the job once handled by
assembler. And since C is avail¬
able on almost all commercial
architectures, a complete transi¬
tion seems assured.

C programmers, though, are
notorious for their disdain for
Fortran. Because UNIX is written
in C and because many Fortran
programmers quickly embraced
the new language, Fortran was
often ignored in early UNIX imple¬
mentations. Despite this disdain,
the real-time market requires
that a “production quality” For¬
tran accompany any real-time
operating system. Like it or not,
UNIX developers have come to
acknowledge that Fortran contin¬
ues to be the primary language
used today for the analysis of
data. Many installations have a
large investment in existing For¬
tran programs. Unsurprisingly,
they are unwilling to rewrite
these programs simply to take
advantage of the superior support

UNIX offers for C.
Companies that serve this

market have taken notice [4]. We
believe that as the real-time pro¬
gramming community comes to
embrace UNIX, it will move away
from Fortran and switch to more
modern languages such as C. But
we also believe that implementa¬
tions of Fortran will continue to
be important for real-time work,
and that they will continue to
improve for some time to come.

UNIX IN REAL TIME:
ADVANTAGES AND
TRADEOFFS

As UNIX has migrated into the
Real-Time World, it has changed
in unmistakable ways. What has
been gained and what has been
lost?

What have we gained? All
real-time programs must be writ¬
ten by a programmer, but real¬
time operating systems are often
difficult systems to use for writ¬
ing programs. For example, Digi¬
tal’s RT-11 and RSX-11 are rich
in real-time features, but they
lack the ease of use that UNIX is
built around. The UNIX para¬
digm of using many small, simple
programs to tackle big tasks
has proven particularly valuable.
UNIX also is unsurpassed for its
wide range of available utilities.
This is directly attributable to
thousands of hours of tuning and
“hacking” in the universities and
companies where UNIX is used.
One interesting note is that one of
the best source language debug¬
gers available for any operating
system was developed for UNIX at
a university, and has since be¬
come the basis for many commer¬
cial debuggers [6].

With UNIX you “get it all”. One
of the biggest problems a new
UNIX user has comes in sorting
out the myriad of choices. In
addition to the usual compilers,
linkers, and text editors, the sys¬
tem also contains presentation

graphics programs, documenta¬
tion development programs, and
support for a wide range of peri¬
pherals. While a new RT-11 user
might spend hours figuring out
the only way to display a particu¬
lar character sequence, a new
UNIX user probably could spend
the same amount of time figuring
out the easiest way.

The entry of UNIX into the real¬
time world has brought choices to
the programmer and user that
never existed before.

What have we lost? Nothing,
of course, comes without cost.
One of the great UNIX concepts is
the idea that a program can be
“re-used”. In many cases, this
means “ported” or moved from
one UNIX system to another.
Although this applies to most
well-written utilities, real-time
programs tend to be specific to a
certain task. Since there is no
single conventional way to han¬
dle the “real-time” nature of a
program, any UNIX software us¬
ing the real-time extensions of
one manufacturer is liable to run
into problems if it’s “ported” to
another UNIX implementation.
This, of course, is why many
UNIX manufacturers are part of
the IEEE PI003 committee to
produce a standardized UNIX in¬
terface. It’s hoped that through
efforts such as these, real-time
extensions may come to be as
well defined as the read(2) and
write(2) system calls currently
are.

Apart from restrictions on por¬
tability, though, another problem
afflicts real-time UNIX imple¬
mentations. Whenever a real¬
time process is running, UNIX
must quit acting like a timeshar¬
ing system, where all processes
are equal. A real-time process will
tend to “hog” the resources it
needs and, as a result, slow down
other work on the machine. In
fact, this is exactly what is
supposed to happen, but tell that

UNIX REVIEW NOVEMBER 1985 101

REAL-TIME UNIX

to the lowly user waiting for a
simple job to finish.

Space is another problem in
the real-time realm. Real-time
applications often do not need all
of the “hooks” UNIX must keep in
memory. There was a day when
UNIX could run on 64 KB of
memory; this included the entire
operating system and all of a
user’s programs. These old sys¬
tems may have been slow, but
by comparison with today’s
UNIX implementations—many of
which can hardly fit into 1 MB of
memory—they seem impressive¬
ly lean. To be fair, today’s UNIX
has grown into a system that
offers much more flexibility and
functionality than any of its pre¬
decessors, but along the way it
has also put on some ungainly
weight.

WHAT NEXT?

Adapting UNIX for real-time is
an endless task. Among the many
changes that could still be made
we list two: block common data

and lightweight processes.
Block Common Data. As men¬

tioned previously, Fortran tends
to be the programming language
of choice for many real-time pro¬
grammers. One structure com¬
monly found in real-time Fortran
is block common data, which
makes available to a set of pro¬
cesses a “common block” resid¬
ing in memory at a specific loca¬
tion. This language structure
allows a hunk of data to be shared
between multiple processes much
like regular shared memory. Un¬
der block common data, each
process uses the same “name”
for a common block. Though each
process has its own address for
the block, all the processes share
the block by name. An interesting
aspect of this structure is that
shared memory remains intact
after a process terminates. That
is, the first process that tries to
access the shared memory causes

the data space to be created.
Other processes may access that
area, and the common area will
not be removed until it is explicit¬
ly released by a program or until
the machine is rebooted.

Unfortunately, block common
data is a hard structure to imple¬
ment under UNIX. Why? The
answer lies in the format of the
a.out file. This file contains two
major regions: raw program text
and static data. It also includes a
special segment called bss that is
allocated at runtime. (Veteran
IBM programmers should recog¬
nize bss as an abbreviation for
“block static storage”.) The text
segment contains “read-only”
instructions and program text.
The data segment contains data
that has been initialized to some
value. The bss segment also
serves as data storage that has
not been pre-initialized but is
allocated at program startup and
initialized to the value of zero.

Most operating systems sup¬
port text segments and provide
for more than one data seg¬
ment and more than one bss seg¬
ment. These segments commonly
are known as multiple dsects,
csects, or psects (for data section,
code section, or program section).
Each of these sects is aligned by
the linker and the operating sys¬
tem’s program loader (the exec(2)
call of UNIX) to begin on a “suit¬
able” boundary, often a “page” of
memory (where a “page” refers to
the local machine’s primitive unit
of data storage, usually between
64 and 4096 bytes of data). The
current UNIX linker, though, does
not support this type of align¬
ment; the a.out format does not
support multiple sections and,
sigh, most UNIX kernel imple¬
mentations do not support seg¬
mented program layout.

The changes required to sup¬
port block common data would be
far reaching, affecting compilers,
debuggers, and other program¬

ming utilities—as well as imple¬
mentations of the exec(2) system
call. Nevertheless, we expect to
see this type of change introduced
someday. (To be fair, System V
already has a new file format
called COFF—for “common ob¬
ject file format”. This new binary
format does address some of the
problems of a.out, but there are
others that are not confronted.
Unfortunately, these problems
cannot be discussed here since
they could fill a paper of their
own.)

Lightweight Processes. Much
has been said in the operating
system community about how
asynchronous events might be
correctly handled [5]. Indeed,
many “modern” programming
languages like Ada now pro¬
vide support for more than one
“thread of control” within a sin¬
gle process. This is so that they
might accommodate asynchro¬
nous events.

Each thread can be thought
of as a subprocess or a pro¬
cess within a process. Since all
“threads” share all resources
(including address space) with
their siblings, they can be sched¬
uled more efficiently than can full
UNIX processes.

Lightweight processes consist
of implementations of multiple
threads. Each thread shares text,

data, and bss segments with its
siblings. A common stack base
exists for each process, but each
thread has a different stack and
uses different copies of whatever
hardware is needed (such as reg¬
isters and pc) to run a “program”
on the local CPU.

Unfortunately, most proposals
to add lightweight processes to
UNIX have become ensnarled in
arguments about the amount of
support they require. The result
is that these processes often end
up as “heavy” as the full ones
offered by UNIX.

One implementation of a UNIX

102 UNIX REVIEW NOVEMBER 1985

look-alike called TRIX [11] from
the Real Time Systems Laborato¬
ry at MIT uses lightweight pro¬
cesses for everything. However,
the full UNIX semantics of the
fork(2) and exec(2) primitives
have been lost, meaning that
TRIX does not look completely
like UNIX for all possible pro¬
grams. Indeed, the porting of
programs like the Bourne shell
and C shell command inter¬
preters can be quite tricky under
TRIX.

CONCLUSION

The UNIX system, brought into
the world as a timesharing oper¬
ating system, nevertheless has
been adapted to real-time appli¬
cations. In fact, because of its
timesharing heritage, UNIX is
rich in its support of multipro¬
cess work, simple communica¬
tion schemes, and the synchroni¬
zation of processes.

Because seconds (classic time¬
sharing time slices) are much
longer than milliseconds (classic
real-time increments), some fa¬
cilities have had to be overhauled
in order to function better in a
more classic real-time system.
But it is eminently reasonable to
make these changes. The result,
we contend, looks, feels, and
works like UNIX—and retains
the ease of use, excellent pro¬
gramming support, and docu¬
mentation preparation strengths
that UNIX offers.

Further work, of course, could
make UNIX better still for real¬
time use. However, as demon¬
strated by commercially availa¬
ble implementations of real-time
UNIX systems, the day of real¬
time UNIX already has arrived.

Clement T. Cole is an Engineer¬

ing Supervisor at MASSCOMP. Pre¬

viously, he consulted nationally on
UNIX-related issues, and worked

for various firms, including Tek¬
tronix, Inc., and the Mellon Insti¬

tute of Science at Carnegie-Mellon
University. Mr. Cole holds degrees in
Electrical Engineering and Math¬
ematics from CMU, and has earned
an MS in Computer Science from
UC Berkeley. He currently serves as

a member of the IEEE PI003 POSE

(UNIX) Working Group.
John Sundman is a Senior Tech¬

nical Writer at MASSCOMP. Like
many technical writers, he entered
the computer field by way of a back
door. His formal education is in
Agricultural Economics, with a con¬
centration on African farming sys¬
tems. ■

REFERENCES

(1 \ MASSCOMP Unix Manual. Volume 18.
System Calls. Libraries and Macros,
Massachusetts Computer Corp. (1983).

[2] S.T. Allworth. Introduction to Real Time
Software Design. Sprlnger-Verlag (1981).

(3) Jeff Goldberg, Comments on UNOS—
Private Communication. Monarch Data
Systems (Sept. 1985).

(4] C. Gridley. “Improving the Performance of
Scientific Applications on a Supermicro
Using A Custom Floating Point Processor
and An Optimizing Compiler”. Proceed¬
ings of the Summer 1985 Usenix Confer¬
ence,'MASSCOMP (June 1985).

[5) B.W. Lampson. “Hints for Computer Sys¬
tem Design". Operating Systems Review,
Volume 17. Number 5. pp. 33-49. Xerox
Palo Alto Research Center (Oct. 1983).

[6] M. Linton. “A Programming Language
Debugger”, Master's Report. UC Berke¬
ley, (Aug. 1981).

(7) J. Ready. Comments on VRTX—Private
Communication, Hunter and Ready (Sept.
1985).

(8| D.P. Reed and R.K. Kanodia, “Synchroni¬
zation with Eventcounts and Sequenc¬
ers”. Communications of the ACM, Vol¬
ume 22. Number 2. pp. 115-123. MIT-LCS
(Feb. 1979).

(9) D.M. Ritchie and K. Thompson. “The Unix
Time-Sharing System”, Communications
of the ACM. Volume 17. pp. 365-375. The
Bell Telephone Laboratories (1974).

(10) D.M. Ritchie, “The Unix I/O System",
Unix Programmer's Manual, The Bell
Telephone Laboratories. (Nov. 1978).

111] J. Sieber and D. Clark. TRIX Implemen¬
tation Outline. Real Time System’s Lab¬
oratory. MIT (Oct. 1982).

(12) H. Spencer. “On 4.2BSD”, Netnews—
UNIX Wizards. University of Toronto

(Summer 1984).

(13) W.E. Suydam. OJf the Shelf Software
Tackles Real Time Tasks, Computer
Design (July 1. 1985).

X.25 FOR UNIX*
Communications

System

• Efficient, error-free data
transmission to multiple
hosts via international
standard X.25, the only
fully certified error-free
public networking system
used world-wide.

• User utilities
• Remote user login
• Remote mail service
• Remote file transfer

• Compatible with widest
number of host
computers.

• Hardware available for
VME, Multibus and
others.

• Previously certified on
TELENET, TYMNET and
UNINET networks.

• Lowest cost per node.

Adax, Inc.
737 Dwight Way

Berkeley, CA 94710
(415)548-7047

* UNIX is a trademark of Bell Laboratories

Circle No. 283 on Inquiry Card

UNIX REVIEW NOVEMBER 1985 103

CALENDAR

EVENTS

DECEMBER

December 12-13 Monterey, CA: Usenix second annual graphics
workshop. Contact: Usenix Conference Office. PO Box 385,
Sunset Beach. CA 90742. 213/592-3243.

JANUARY 1986

January 15-17 Denver: Winter ‘86 Usenix Technical Confer¬
ence. Contact: Usenix Conference Office (see above).

FEBRUARY

February 4-7 Anaheim. CA: UniForum International Confer¬
ence of UNIX users, sponsored by /usr/group. Contact:
UniForum 1986, 2400 E. Devon Ave., Suite 205, Des Plaines. IL
60018. 312/299-3131.

TRAINING

Note: Below are listed the dates, locations, titles, and
contacts for UNIX-related training courses. For registration
and further information on particular courses, contact the
firm cited. Training firm addresses and phone numbers are
listed alphabetically at the end of the calendar.

NOVEMBER

November 4-5 Edison, NJ: ’‘Shell Programming”. Contact
AUXCO.
November 4-5 Santa Monica, CA: “Advanced Commands for
Programmers”. Contact Interactive.
November 4-6 Cherry Hill, NJ: “SNA Architecture and
Implementation”. Contact CSI.
November 4-8 Trumbull, CT: “Advanced C”. Contact Bunker

Ramo.
November 4-8 Cincinnati: ”C Shell Programming”. Contact
IT DC.
November 4-8 Washington. DC: ”C Language Workshop”.
Contact Structured Methods.
November 4-8 Chicago: “UNIX System Administration”.
Contact Uniq.
November 4-8 Washington. DC: “The UNIX System for the DP
Professional”. Contact Webco.
November 5-8 Washington. DC: “Programming in C”. Contact

ICS.
November 5-8 Los Angeles: “UNIX: A Comprehensive Introduc¬
tion”. Contact ICS.
November 6-8 Edison, NJ: “UNIX Tools”. Contact AUXCO.
November 6-8 Santa Monica, CA: “UNIX Architecture—A
Conceptual Overview”. Contact Interactive.
November 6-8 New York: “Fundamentals of the UNIX System
for Management”. Contact LUCID.
November 6-8 Bellevue, WA: “Hands-on UNIX for Program¬

mers”. Contact SSC.

November 11-12 Tarrytown, NY: “C Data Concepts for
Manager”. Contact Sessions and Gimpel.
November 11-13 London: ‘‘UNIX Administration”. Contact
CTG.
November 11-13 New York: “Fundamentals of the UNIX
System for Management”. Contact LUCID.
November 11-15 Edison, NJ: “C-UNIX Interface”. Contact
AUXCO.
November 11-15 Trumbull, CT: “Intro to UNIX”. Contact
Bunker Ramo.
November 11-15 Dallas and San Francisco: “C Language
Programming”. Contact CTG.
November 11-15 New York and Washington, DC: “UNIX
Internals”. Contact CTG.
November 11-15 Santa Monica, CA: “The C Programming
Language”. Contact Interactive.
November 11-15 New York: “UNIX System Workshop”.
Contact Structured Methods.
November 11-15 Chicago: “C Language”. Contact Uniq.
November 11-22 Cincinnati: “UNIX for Application Develop¬
ers”. Contact ITDC.
November 12 Washington, DC: “UNIX vi editing”. Contact
Webco.
November 12-15 Los Angeles: “Programming in C”. Contact
ICS.
November 13-14 Washington, DC: “Advanced Editing”.
Contact Webco.
November 13-15 Austin, TX: “SNA Architecture and Imple¬
mentation”. Contact CSI.
November 13-15 Tarrytown, NY: ‘‘C Data Concepts for
Programmers”. Contact Sessions and Gimpel.
November 15 Washington, DC: “Introduction to nroff”.
Contact Webco.
November 18-19 Dallas and San Francisco: “Shell Program¬

ming”. Contact CTG.
November 18-19 London: “Advanced C Programming Work¬
shop”. Contact CTG.
November 18-19 Santa Monica. CA: “Advanced Topics for C
Programmers”. Contact Interactive.
November 18-19 Annapolis, MD: “The Concepts of Object-
Oriented Programming”. Contact PPI.
November 18-20 New York: “Office Automation”. Contact
LUCID.
November 18-21 Edison, NJ: “System Administration”.
Contact AUXCO.
November 18-22 Trumbull, CT: ”C Programming”. Contact
Bunker Ramo.
November 18-22 Merrimack, NH: ”C Programming Work¬
shop”. Contact Plum Hall.
November 18-22 New York: ”C Language Workshop”. Contact
Structured Methods.
November 18-22 Chicago: “Unify Database Management”.
Contact Uniq.
November 18-22 Washington, DC: ”C Language Program-

104 UNIX REVIEW NOVEMBER 1985

ming”. Contact Webco.
November 19 Palo Alto, CA: SV Net Monthly Meeting. Contact
SV Net.
November 19-21 New York and Washington, DC: “UNIX
Administration”. Contact CTG.
November 20-22 London: “Advanced C Programming Under

UNIX”. Contact CTG.
November 20-22 Dallas and San Francisco: “Using Advanced
UNIX Commands”. Contact CTG.
November 20-22 “Advanced C Programming Under UNIX”.
Contact Interactive.
November 25 New York: “UNIX System Literacy”. Contact
Structured Methods.
November 25-26 New York: “Using Lex and yacc “. Contact
Structured Methods.
November 25-28 New York: “UNIX System Concepts and
Facilities”. Contact LUCID.
November 25-29 London: “Berkeley Fundamentals and esh
Shell". Contact CTG.

DECEMBER

December 2 New York: “Mainframe-to-Mini-to-Micro Links”.
Contact Interactive.
December 2-3 New York and Washington, DC: “Advanced C
Programming Workshop”. Contact CTG.
December 2-3 New York: “Shell Programming Workshop”.
Contact Structured Methods.
December 2-4 Edison, NJ: “Advanced C Language Program¬
ming”. Contact AUXCO.
December 2-4 Santa Monica, CA: “UNIX Fundamentals”.
Contact Interactive.
December 2-5 Callaway Gardens, GA: “UNIX OS: The First
Step”. Contact AT&T

December 2-6 Dallas and San Francisco: “UNIX Internals”.
Contact CTG.

December 2-6 Cincinnati: “UNIX for End Users”. Contact
ITDC.

December 2-6 Absecon, NJ: “C Programming Workshop”.
Contact Plum Hall.

December 2-6 Washington, DC: “C Language Programming".
Contact Webco.
December 3 London: “UNIX Overview". Contact CTG.
December 3-5 San Francisco: “SNA Architecture and Imple¬
mentation”. Contact CSI.

December 4-6 London: “UNIX Fundamentals for Non-Program¬
mers”. Contact CTG.
December 4-6 New York and Washington, DC: “Advanced C
Programming Under UNIX”. Contact CTG.
December 5-6 Edison, NJ: “C Language Debugging”. Contact
AUXCO.
December 5-6 Santa Monica, CA: “Using the Shell". Contact
Interactive.

December 9 New York: “Principles of Computer Graphics".
Contact LUCID.

December 9-10 Santa Monica, CA: “System Administrator’s

Overview". Contact Interactive.

Please send announcements about training or events of

interest to: UNIX Review Calendar. 500 Howard Street. San

Francisco. CA 94105. Include the sponsor, date and location

of event, address of contact, and relevant background

information.

CONTACT INFORMATION

American Institute for Quality and Reliability (AIQR). 1494
Hamilton Ave., Suite 104, San Jose. CA 95125. 800/621-
0854 ext.290, or in CA. 408/978-2911.

Asidor Training Institute. 2143 Morris Ave., Suite 5,
Union. NJ 07083. 201/888-0241.

AT&T Information Systems. Institute for Communications
and Information Management. PO Box 8, Pine Mountain.
GA 31822-0008. 800/247-1212.

Auxton Computer Enterprises, Inc. (AUXCO). 2 Kilmer
Rd., Edison. NJ 08817. 201/572-5075.

Bunker Ramo Information Systems, Trumbull Industrial
Park. Trumbull, CT 06609. 203/386-2000.

Center for Advanced Professional Education (CAPE). 1820
E. Garry St.. Suite 110. Santa Ana, CA 92705. 714/261-
0240.

Computer Technology Group (CTG), 310 S. Michigan
Avenue. Chicago, IL 60604. 800/323-UNIX. or in IL, 312/
987-4082.

Communications Solutions, Inc. (CSI). 992 S. Saratoga-
Sunnyvale Road. San Jose. CA 95129. 408/725-1568.

Information Technology Development Corp. (ITDC), 9952
Pebbleknoll Drive, Cincinnati, OH 45247. 513/741-8968.

Integrated Computer Systems (ICS), PO Box 45405, Los
Angeles. CA 90045. 800/421-8166. or in CA. 800/352-
8251.

Interactive Systems Corp., 2401 Colorado Avenue, 3rd
floor. Santa Monica, CA 90404. 213/453-8649.

LUCID. 260 Fifth Avenue. Suite 901. New York, NY 10001.
212/807-9444.

Plum Hall. 1 Spruce Avenue, Cardiff, NJ 08232. 609/927-
3770.

Productivity Products International, Inc. (PPI), 27 Glen
Road. Sandy Hook, CT 06482. 203/426-1875.

Sessions & Gimpel Training Associates, 474 Washington
Street. Holliston, MA 01746. 617/429-6350.

Silicon Valley Net (SV Net). PO Box 700251. San Jose. CA
95170-0251.415/594-2821 (Grant Rostig).

Specialized Systems Consultants (SSC), PO Box 7, North-
gate Station, Seattle, WA 98125-0007. 206/367-UNIX.

Structured Methods, Inc., 7 W. 18th St., New York, NY
10011.800/221-8274.

Uni-Ops. PO Box 27097. Concord, CA 94527-0097. 415/
945-0448.

Uniq Digital Technologies, 28 S. Water Street, Batavia, IL
60510. 312/879-1008.

Webco Industries, Inc.. 14918 Laurel Oaks Lane, Laurel,
MI) 20707. 301/498-0722.

UNIX REVIEW NOVEMBER 1985 105

THE LAST
WORD

Letters to the editor

SOFTWARE "DRIVER TRAINING"

Dear UNIX REVIEW,

In Glenn Groenewold’s Rales of

the Game column in your July
issue, he claims: “Even a com¬
pletely shielded [UNIX] system
doesn’t approach the user ease of
the modern automobile, where you
need only turn the key and step on
the gas.” In one sense he’s right; in
another, he’s wrong.

Mr. Groenewold has forgotten
that driving is not a natural hu¬
man ability. One must learn to
drive; this normally involves a good
deal of time and effort, and prefer¬
ably the services of a skilled instructor. Trying to
bypass this learning process is both unwise and
illegal. Driving is taken so much for granted in our so¬
ciety that it’s easy to overlook the skill and training
required.

In this sense, current computer systems are
already much easier to use than a modern auto¬
mobile. Learning to use most computer systems is no
harder than learning touch typing, or arithmetic, or
correct English spelling. What is different is the social
acceptability of lengthy training processes.

People do not want to make major efforts to learn to
use a computer system, especially since every system
is different. If computers become as ubiquitous as
many people think, and there is a lot more standard¬
ization of the user interface, then eventually we may
see detailed training in the use (not programming!) of
computer systems become a standard part of educa¬
tion. Until then, all we can do is work to make
inherently complex software systems simpler to use.

Henry Spencer
SP Systems

Toronto, Ontario

LEADER ZAPPED;
NOW UNZAP

Dear UNIX REVIEW,

It was with mixed happiness
and horror that I opened my June
issue of UNIX REVIEW—happiness
because my article “How it Should
be Done’’ was prominently fea¬
tured (I even got my name in Mark
Compton’s column!)—horror be¬
cause the name of one of the most
important members of the Lucas-
film Games Group was omitted
entirely! David Fox was project
leader for “Rescue on Fractalus!’’.
The game was primarily David’s

idea and without his efforts there would have been no
such game.

Unfortunately, the picture on page 38 of your June
issue included everyone but David Fox (who was off
zapping Jaggis while we were posing). To see what Da¬
vid Fox looks like, check the “Rescue on Fractalus!’’
cover picture in your local game store—that’s him in
the orange flight suit.

Peter Langston
Bell Communications Research

Morristown, NJ

BEG TO DIFFER

Dear UNIX REVIEW,

Joel McCormack (UNIX REVIEW, September,
1985, p. 31) comments, “There are currently no
textbooks on Modula-2. . . I’m unsure what
McCormack classifies as a “textbook”. The follow¬
ing most certainly exist:
1) Interactive Programming Environments, by
Barstow, Shrobe, and Sandewall (McGraw-Hill,
1984);

106 UNIX REVIEW NOVEMBER 1985

2) Modula-2 for Pascal Programmers, by Gleaves
(Springer-Verlag, 1984);
3) Programming in Modula-2, 3rd ed., by Niklaus
Wirth (Springer-Verlag, 1985);
4) Software Engineering With Modula-2 and ADA,

by Wiener and Sincovec (Wiley, 1984);
5) Modula-2 Programming, by Ogilvie (McGraw-Hill,
1985).

Bill Freeman
Tinton Falls, NJ

Thank youfor bringing these resources to light.
In a similar vein, it has been observed that a
reference within the same article incorrectly
indicated that ttModula-2—A Solution to Pascals
Problems” by Sumner and Gleaves had run in the
September, 1983, issue of S/GPLAN. The article in
fact was printed in the September, 1982, issue of

that publication. Editor

GOT UP AND GONE

Dear UNIX REVIEW,

I wondered why, in the C Advisor (March 1985),
Bill Tuthill felt it necessary to apologize for his use of
gotos. Sure enough, in the June letters to the editor,
the goto witch hunters were out in force.

Just so there is no misunderstanding, I agree that
the gotos of BASIC and Fortran are an abomination.
Gotos in C, however, are seldom a problem. Those
who claim that C gotos are just like Fortran gotos are
chasing a straw man.

Bill Tuthill, even if he never does anything else in
his career, has long since “paid his dues” as a
professional programmer. His instincts are right on
target.

Both letter writers would have us believe that the
sample code is improved by turning it into a formal
loop. That implies that the nature of the code
fragment is iterative; it says that the programmer
wants to emphasize that this is an iterative
algorithm.

The fact is that the code would normally be
executed only once. Making a loop out of it is a smoke¬
screen that obscures the meaning.

If the anti-goto folks are to be consistent, they’ll
have to take on much more than just literal gotos. An
obvious target is setjmp/longjmp (non-local gotos
with automatic call frame abort). Exceptions also
have to go; instead, all programs must have a main
loop somewhat like the following;

while (! divide_by_zero && ! illegaL_instruction && ! hangup etc.

Of course, if any of these exceptions do occur, they

must be passed back, not just one function at a time,
but one level within each function at a time.
Interrupts and pipelining are even worse—rather like
three-dimensional gotos, out of the plane of the
program listing. Can them too. And as for parallel

processing—that’s like four-dimensional gotos!
Anathema!

I wonder what those guys make of the new ANSI C
proposed storage class volatile—the one that warns
the compiler that some other process may modify a
data item?

There is, in fact, a piece of very badly structured
code in Bill’s example, which both letter writers
missed. I refer to the “exit(l)”. Obviously some error
has occurred. There is no diagnostic; there is no
attempted cleanup. Instead, the program executes a
longjmp with an unknown status to an unknown
context, with a faint prayer (the “1”) that that context
might do something sensible. Good luck.

Dave Fafarman
ENSCo Engineering Software

El Sobrante, CA

Dear UNIX REVIEW,

I opened my first issue of UNIX REVIEW to discover a
letter decrying the use of the goto statement. I will not
argue that the goto is a crutch for inadequate
programmers. But please, please, do not forget the
“kludge” programmer in C. This level of programmer
needs as many crutches as he can get to get jobs done!

I am a “kludge” programmer. I get jobs done. My
programs may not be sophisticated, but they do work.
If I write a program that is going to be used frequently
enough to warrant it. I’ll have it rewritten by a
PROGRAMMER. (That’s all capital letters, and no
smile!) I highly respect the type of person who has the
discipline to write concise and efficient code. But I am
a mechanical engineer and not a PROGRAMMER. I do
not apologize for this fact and I highly resent it when a
tool, such as C, is closed to me by the search for
“purity”.

I have been writing programs in C since January. I
find it to be a highly useful tool. As far as I know, C and
FORTH are the only widely available languages that
were written by people who needed to get jobs
done...period. The other languages were either writ¬
ten to teach people “good” programming style or to
support antiquated I/O systems. I am usually the
person dragging my (antiquated) portable 8-bit ma¬
chine around in order to have a FORTH system
available to me so that my jobs will get done on time.
This has changed considerably since January. I hope
that this trend will continue.

Lew Merrick
Lynnwood, WA

UNIX REVIEW NOVEMBER 1985 107

ADVERTISERS' INDEX

Absoft. ... 97 Hewlett-Packard. 53, Centerspread

Adax Inc. . . 103 Image Network . .100

Arnet. ... 98 Inspiration Systems . .10

AT&T Customer Information Center ... 43 Morningstar Technologies20
AT&T Information Systems. ... 17 Network Research Corp. .79

B.A.S.I.S. ... 18 Oasys . .45
bbj Computer Services 99 Prescience. .13
Bell Technologies. ... 86 Quality Software Products45
Ceegen Corp. ... 12 Radio Shack . .51
Celerity Computing. 11 Rapitech . .39
Century Software 22 Relational Database Systems . . 1,2,3
CLEO Software 83 Santa Cruz Operation. .49
Cogitate. 82 Scientific Placement . .93
Computer Technology Group. 27 Software Development Systems .98
Corporate Microsystems 19 Sperry Corp. .57
COSI . .9 Textware. .21
Data Language Corp. 14 UC Berkeley . .35
DCC Data Services 98 Unipress Software. 85,87,89,91
DSD Corp. 76 Unitech Software Inc. .15
DTSS, Inc. 97 Usenix Association. .95
Emerald Systems Corp. 77 UX Software .
Franz, Inc. 82 Verdix. .81
Gould 23 XED/Computer Methods. .11
Handle Technologies. Cover II Zanthe . . . Cover III

COMING UP IN DECEMBER

International UNIX

• The American Bias

• International layers

• The stakes

• Shrinking the world down to size

• Market update

108 UNIX REVIEW NOVEMBER 1985

ZIM 2.5 A DBMS REWLUTION

Woodward Drive
Ontario K2C 0R1

(613) 727-1397 ZANTHE
INFORMATION INC

Power
ZIM's high-level language lets you build user commands which

implement applications without the necessity and cost of additional
programming tools. ZIM's forms facility and extensive report

generator permit completely menu-driven applications. Completed
compiled, applications use the Runtime System, leading to fast

execution, preventing unauthorized access or modifications, and
decreasing cost and memory requirements.

Flexibility
ZIM gives you unprecedented simplicity and flexibility. ZIM

commands parallel simple English sentences, making it easy to
learn and use. Other features include automatic updates of all

indexes, multi-user support, and an extensive range of validation,
editing and masking facilities. ZIM's limits are only those of your
hardware, operating system and imagination. And with ZIM 2.5,

your database is no longer limited to a single hard disk.

Have you been looking for perfect data management that you can
enjoy on your own terms? Then you've probably already heard of
ZIM 2.4 — the most powerful database system available. Until now.
Because ZIM 2.5 is here.

ZIM 2.5 is a fourth generation application development tool which
makes it possible to expand the capabilities of your micro beyond
what you've ever imagined. ZIM mirrors the complexities of the
real world by letting you develop as many and as varied
applications as you could possibly need.

"ZIM is... a successful migration of mainframe ideas and needs to a
micro. (ZIM) proves not only that the job can be done but also that
it can be done well. ZIM provides a reference against which current
and future data bases can be judged." James Creane, Data Based
Advisor/July 1985.

Speed
ZIM breaks the speed limit — between 3 and 50 times faster than
industry leaders in sorting and joining files within the data-base.
ZIM's internal architecture, and the implementation of its strategy
analyzer and priority-driven buffering ability, ensure that data is
processed in the most efficient manner possible.

Portability
ZIM is the only database management system with 100%
application portability for single-user and multi-user
:onfigurations. ZIM is available under PC-DOS,
Zoncurrent PC-DOS, UNIX, XENIX, and QNX.
Mever again will you be required to re-write
/our applications for different operating systems
environments.

Circle No. 249 on Inquiry Card

"ZIM is (a) well-conceived, soundly-implemented,
thoroughly professional system. Its design evidences a

strong commitment to consistency and to the goal
of natural nonprocedural user interaction."

Richard M. Foard, PC Tech Journal,
October 1985.

ZIM 2.5 — DATA
MANAGEMENT AT

ITS BEST

The Language for a New Generation
Portability. UX-Basic™ application

programs execute unchanged on any UNIX™
machine and are completely device independent.

Power. UX-Basic contains the building
blocks for efficient application program develop¬
ment. It also allows you to tap the full power of
UNIX and gives you direct access to data bases.

Productivity. UX-Basic is friendly and
easy to learn and use. The interactive program¬
ming environment provides syntax checking as
well as real-time debugging and testing.

Performance. UX-Basic gives you speed
when you need it with our efficient pseudo-code
compiler/runtime package. We are constantly
working to keep UX-Basic’s performance at the
leading edge.

Profit. UX-Basic programs are structured,
modular and readable. Maintenance and support

are easy.

Perfect for UNIX... a new generation of
computers... a new generation of computer

users.

SEUniForum
The International Conference of UNIX Users

February 4-7,1986

UX Software, Inc.
10 St. Mary Street, Toronto, Canada M4Y1P9

Tel: (416) 964-6909 TLX: 065-24099

Available from major computer manufacturers such as Altos. AT&T,

Siemens and an international network of distributors.

UNIX is a trademark of AT&T Laboratories.
UX-Basic is a registered Trademark of UX Software, Inc.

See us at

M'85
November 20-24. 1985

Las Vegas Convention Center-West Hall
Las Vegas, Nevada

Circle No. 235 on Inquiry Card

