
m

£ V .
• v v*. - vt ‘ . ••* 'v •

■

9m§&
t\ ■ %sj'

.

.
L-rt'tV

3i
Ik:"••

N@P“PIfK^

4»&8wSi' ;• ‘

Modular.
Integrated.

Now.

Handle Writer/Spell™
Word processing with integrated

spelling correction and verification.

Handle Calc™
Spreadsheet with up to 32,000
rows and columns. Conditional

and iterative recalculation.

The Handle Office-Automation Series is a powerful set of modular,
integrated software tools developed for today's multiuser office
environment. Handle application modules can be used stand-alone
or combined into a fully integrated system.

The Handle Office-Automation Series modules offer:

• Ease of Use and Learning
• Insulation from UNIX
• Data Sharing Between Multiple Users
• Data Integration Between Modules
• Data Sharing with Other Software Products
• Sophisticated Document Security System

Handle Technologies, Inc.

Corporate Office
6300 Richmond

3rd Floor
Houston, TX 77057

(713)266-1415

Sales and Product Information
850 North Lake Tahoe Blvd.

P.O. Box 1913
Tahoe City, CA 95730

(916) 583-7283

TM-HANDLE, HANDLE HOST, HANDLE WRITER, HANDLE SPELL HANDLE WRITER/SPELL and HANDLE CALC ARE TRADEMARKS OF HANDLE TECHNOLOGIES, INC.
TM-UNIX IS A TRADEMARK OF AT&T BELL LABORATORIES.

Circle No. 15 on Inquiry Card

file manager. And C-ISAM? the de facto
standard ISAM for UNIX. It’s built into all
our products, but you can buy it separately.

And when you choose RDS, youll be
in the company of some other good com¬
panies. Computer manufacturers including
AT&T, Northern Telecom, Altos and over
60 others. And major corporations like
Anheuser Busch, First National Bank of
Chicago and Pacific Bell.

Which makes sense. After all, only RDS
offers a family of products that work so well
together. As well as with so many industry
standards.

So call us for a demo, a manual and a
copy of our Independent Software Vendor
Catalog. Software vendors be sure to ask
about our new “Hooks” software integration
program. Our number: 415/424-1300.

Or write RDS, 2471 East Bayshore Road,
Palo Alto, CA 94303.

And we’ll show you how we took a good
idea and made it better.

RELATIONAL DATABASE SYSTEMS, INC.

UNIX REVIEW
THE PUBLICATION FOR THE UNIX COMMUNITY

Volume 3,

Number 8

August 1985

DEPARTMENTS: FEATURE S:

6 Viewpoint

8 The Monthly Report
By Roger Strukhoff

16 The Human Factor
By Richard Morin

66 Rules of the Game
By Glenn Groenewold

70 Industry Insider
By Mark G. Sobell

76 Devil's Advocate
By Stan Kelly-Bootle

24 DATA MANAGEMENT
OVERVIEW

By Eric Allman

A survey of the challenges, possible
approaches, and goals facing
database developers.

80 C Advisor
By Bill Tuthill

87 The UNIX Glossary
By Steve Rosenthal

92 Recent Releases

104 Calendar

108 Advertiser's Index

Cover art by Ivy Nichols

34 THE DBMS-UNIX MATCH
By Roger Sippl

It may not be a match made in heaven,
but it is workable—and critical to the
commercial success of UNIX.

4 UNIX REVIEW AUGUST 1985

DATABASE INTRICACIES

42 INTERVIEW WITH PETER
WEINBERGER

By Ned Peirce 58

One of Bell Labs' foremost database
TRANSACTION
PROCESSING

gurus calls them as he sees them.

BACKEND DATABASE
MACHINES

By Paula Hawthorn

The whys and wherefores of database
work on dedicated machines.

By Kathryn Anderson

Not only is TP possible under UNIX—
it can actually be done without kernel
modifications.

UNIX REVIEW (ISSN-0742-3136) is published monthly by REVIEW Publications Co. It is a publication dedicated exclusively to the needs of the UNIX community.
Second class postage paid at Renton, WA 98055 and at additional mailing offices. POSTMASTER: Please send Form 3579 to UNIX REVIEW, 500 Howard Street, San
Francisco, CA 94105. Entire contents copyright 1985. All rights reserved and nothing may be reproduced in whole or in part without prior written permission from
UNIX REVIEW
Subscriptions to UNIX REVIEWare available at the following annual rates (12 issues): USS28 in the US; US$35 in Canada; US$48 in all other countries/surface mail;
US$85 in all other countries/airmail. Correspondence regarding editorial (press releases, product announcements) and circulation (subscriptions, fulfillment, change
of address) should be sent to 500 Howard Street, San Francisco, CA 94105. Telephone 41 5/397-1881. Correspondence regarding dealer sales should be sent to 901
South 3rd Street, Renton, WA 98055. Telephone 206/271-9605.
Letters to UNIX REVIEW or its editors become the property of the magazine and are assumed intended for publication and may so be used. They should include the
writer's full name, address and home telephone number. Letters may be edited for the purpose of clarity or space. Opinions expressed by the authors are not
necessarily those of UNIX REVIEW.
UNIX is a trademark of Bell Laboratories, Inc. UNIX REVIEW is not affiliated with Bell Laboratories.

UNIX REVIEW AUGUST 1985 5

PUBLISHER:

Pamela J. McKee

ASSOCIATE PUBLISHERS:

Ken Roberts. Scott Robin

EDITORIAL DIRECTOR:

Stephen J. Schneiderman

EDITOR:

Mark Compton

ASSOCIATE EDITORS:

Roger Strukhoff
David Chandler
EDITORIAL ADVISOR:

Dr Stephen R Bourne, Consulting Software
Engineer. Digital Equipment Corporation.

EDITORIAL REVIEW BOARD:

Dr. Greg Chesson, Chief Scientist, Silicon Graphics.
Inc.

Larry Crume. Director, AT&T UNIX Systems
Far East

Ted Dolotta, Senior Vice President of Technology.
Interactive Systems Corporation

Gene Dronek, Director of Software, Aim
Technology

Ian Johnstone, Project Manager, Operating
Software, Sequent Computer Systems

Bob Marsh, Chairman, Plexus Computers
John Mashey, Manager. Operating Systems.

MIPS Computer Systems
Robert Mitze, Department Head, UNIX Computing

System Development, AT&T Bell Labs
Deborah Scherrer. Computer Scientist. Mt. Xinu
Jeff Schriebman. President, UniSoft Systems
Rob Warnock, Consultant
Otis Wilson, Manager, Software Sales and

Marketing, AT&T Information Systems

HARDWARE REVIEW BOARD:

Gene Dronek, Director of Software, Aim
Technology

Doug Merritt. Technical Staff. International
Technical Seminars, Inc.

Richard Morin, Consultant. Canta Ford a Computer
Laboratory

Mark G. Sobell, Consultant

SOFTWARE REVIEW BOARD:

Ken Arnold. Consultant, UC Berkeley
Jordan Mattson. Programmer, UC Santa Cruz
Dr. Kirk McKusick, Research Computer Scientist. UC

Berkeley
Doug Merritt, Technical Staff, International

Technical Seminars. Inc.
Mark G. Sobell, Consultant

CONTRIBUTING EDITOR:

Ned Peirce, Systems Analyst. AT&T Information
Systems

PRODUCTION DIRECTOR:

Nancy Jorgensen

PRODUCTION STAFF:

Cynthia Grant. Tamara V. Heimarck. Florence
O'Brien, Barbara Perry, Denise Wertzler

BUSINESS MANAGER:

Ron King

CIRCULATION DIRECTOR:

Wini D. Ragus

CIRCULATION MANAGER:

Jerry M. Okabe

MARKETING MANAGER:

Donald A Pazour

OFFICE MANAGER:

Tracey J. McKee

TRAFFIC:

James A. O’Brien, Manager
Tom Burrill, Dan McKee, Corey Nelson

NATIONAL SALES OFFICES:

500 Howard St.
San Francisco, CA 94105
(415) 397-1881

Regional Sales Manager:
Collen M. V. Rodgers
Sales/Marketing Assistant:
Anmarie Achacoso

370 Lexington Ave.
New York. NY 10017
(212) 683-9294

Regional Sales Manager:
Katie A McGoldrick

BPA membership applied for in March, 1985

VIEWPOINT

Getting down to business

People who endorse UNIX as a
business solution have learned to
expect snickers and raised eye¬
brows for their trouble. It’s not
difficult to see why.

Despite a surge in applications
development over the past 18
months, UNIX is still commonly
perceived as the exclusive play¬
ground of the technically sophis¬
ticated. Databases somehow do
not fit into that picture.

The fact of the matter, though,
is that database management is
possible in the UNIX environ¬
ment. A large body of software—
over 50 UNIX DBMS products by a
recent count—testifies to that.
Nevertheless, reservations per¬
sist for good reason.

First, there is the hierarchical
file structure of UNIX. Despite its
elegance and overall functional¬
ity, it fails, to meet the specific
needs of relational database soft¬
ware. To compound matters,
UNIX lacks standardized file and
record locking.

All is not lost, however. Clever
software developers have man¬
aged to work around the oper¬
ating system’s limitations to
produce DBMS software that suf¬
fers neither for lack of functional¬
ity nor performance.

This issue of UNIX REVIEW
explores some of the strategies
employed by those developers.
Eric Allman lays out the chal¬
lenge in the introductory article,
which he begins with a discus¬
sion of the evolution of data
management and concludes with
a survey of desirable database
features.

Roger Sippl, president of Rela¬
tional Database Systems Inc.,
follows with a piece that details
how UNIX succeeds and fails in
meeting the needs of data man¬
agement software. A few modest

proposals are interspersed.
One of the strategies Roger

introduces is the use of a backend
machine. Paula Hawthorn ex¬
pands on this notion in the article
that follows. Using Britton Lee’s
Intelligent Database Machine as
an example, she discusses how
the use of a separate dedicated
processor for database work
can improve DBMS performance,
even while it frees up CPU cycles
for other tasks.

Another piece, authored by
Kathryn Anderson, probes strat¬
egies that can be used to facilitate
transaction processing. Although
TP is purportedly a bugaboo topic
in UNIXland, Kathryn tells how
System V can support robust
transaction applications—with¬
out resorting to kernel modifica¬
tions. She focuses largely on the
topics of control and tunability.

Ned Peirce closes out the theme
with an interview of Peter Wein¬
berger, the head of Computer
Science Research at AT&T Bell
Labs. Peter’s database work
under UNIX has become well
known in development circles
and his comments on the suitabil¬
ity of UNIX for database work
carry the tone of authority.

As you may have guessed, all
voices in the issue support UNIX
as a database environment, al¬
though it’s acknowledged that
some adjustments are necessary.
This should be heartening to
those who wish to see UNIX
succeed in the business commu¬
nity, because database software
will be the foundation upon
which much of tomorrow’s busi¬
ness applications will be built.

6 UNIX REVIEW AUGUST 1985

How to go
from

UNIXtoDOS
without.

compromising
your

standards.
It’s easy. Just get an industry standard file

access method that works on both.
C-ISAM™ from RDS.
It’s been the UNIX” standard for years

(used in more UNIX languages and programs
than any other access method), and it’s fast
becoming the standard for DOS.

Why?
Because of the way it works. Its B+ Tree

indexing structure offers unlimited indexes.
There’s also automatic or manual record
locking and optional transaction audit
trails. Plus index compression to save disk
space and cut access times.

<0 1985, Relational Database Systems, Inc. UNIX is a trademark of AT&T Bell laboratories.
INFORMIX is a registered trademark and RDS, C-ISAM and File-It! are trademarks of
Relational Database Systems, Inc.

How can we be so sure C-ISAM works
so well? We use it ourselves. It’s a part
of INFORMIX: INFORMIX-SQL and File-itl?
our best selling database management
programs.

For an information packet, call (415)
424-1300. Or write RDS, 2471 East Bayshore
Road, Palo Alto, CA 94303.

You’ll see why anything less than C-ISAM
is just a compromise.

RELATIONAL DATABASE SYSTEMS, INC.

Circle No. 51 on Inquiry Card

How we
as part of the program, you can ask more of
your database. Using the emerging industry-

• 1 standard query language.

improved Structured Tomakeyouriob
Queiy Language.

Actually, we didn’t change a thing.
We just combined it with the best

relational database management system.
Introducing INFORMIX-SQL.
It runs on either UNIX” or MS”-DOS

easier, INFORMIX-SQL
comes with the most complete
set of application building
tools. Including a full report

writer and screen generator. Plus a family
of companion products that all work
together.

Like our embedded SQLs for C and
COBOL. So you can easily link your pro-

operating systems. And now with IBM’s SQL grams with ours. File-it!” our easy-to-use

~— 1—~

_

INFORMIX is a registered trademark and RDS, C-1SAM and File-it! are trademarks of Relational Database Systems, Inc. IBM, UNIX and MS are trademarks oflntemational Business Machines Corporation,
AT&T Bell Laboratories and Microsoft, respectively. © 1985, Relational Database Systems, Inc.

The First Name In
Integrated Office

Automation Software

Executive Mail
Telephone
Directory

Menu Processor
Word Processor
Forms/Data Base
Spreadsheet

Certified and

Deliverable Since 1981

XED was the first independent software
company to introduce a Unix WP package
and achieved early success by selling to
the government and international market
(XED is the only Unix WP package to meet
government specifications). Worldwide
sales of XED rank Computer Methods first
in both sales and units installed in 1984.

INTEGRATED OFFICE SOFTWARE _

Box 3938 • Chatsworth, CA 91313 U.S.A. • (818) 884-2000
FAX (818) 884-3870 • Inti. TLX 292 662 XED UR

XED is a registered trademark of CCL Datentechnik AG

UNIX is a trademark of AT & T Bell Laboratories, Inc. Circle No. 60 on Inquiry Card

THE MONTHLY
REPORT

Pyramid power

by Roger Strukhoff

One of the more impressive
machines making its debut at the
National Computer Conference in
Chicago July 16 was Pyramid
Technology Corp.’s 98x, a super¬
minicomputer built with the idea
of equal opportunity for equal
microprocessors. Pyramid calls
the 98x an “isoprocessor” sys¬
tem; there are two 32-bit RISC
(reduced instruction set com¬
puter) processors working as
equal partners. If one processor
fails, the system continues to run
at about 60 percent of capacity.

The 98x supports up to 98
users, comes with as much as 16
MB of main memory, and offers
disk drives with nearly a gigabyte
of capacity (“only” 940 MB actu¬
ally). The machine uses Pyra¬
mid’s OSx operating system, a
dual port (or “dualPort”, in Pyra¬
mid parlance) of UNIX, incorpo¬
rating both 4.2BSD and System
V.

Charles Krahling, Pyramid’s
director of marketing, says his
company is fully aware of the
traditionally weak I/O of boxes
based on UNIX, and so has devel¬
oped a new I/O subsystem for
the 98x. “I/O (in any system)
can always use improvement,”
Krahling noted. “Plus, with the
powerful disks we see coming out
in the near future, we needed to
develop a stronger I/O system for
our machines.” The subsystem
has what Pyramid calls an Intelli¬

gent I/O Processor (IOP), with an
aggregate throughput capability
(PTAL bandwidth) of 11 MB per
second. The IOP also provides
disk rotational sensing and over¬
lapped seeks.

The idea behind isoprocessing
comes from Purdue’s dual pro¬
cessor implementation, Krahling
said. CPU balance is achieved
through the use of a proprietary
semaphore system that protects
critical sequences of code and
controls simultaneous access
to kernel data structures. The
semaphore is designed to comple¬
ment standard UNIX process syn¬
chronization concepts, allowing
symmetric multiprocessor sup¬
port without the need to imple¬
ment major structural changes to
the UNIX kernel. Normal UNIX
organization is maintained, but
both CPUs share a single copy of

the OSx kernel and data struc¬
tures, and have equal access to all
shared resources.

The isoprocessors are imple¬
mented in a fast Shottky TTL,
and have a cycle time of only 100
nanoseconds. Each isoprocessor
has an instruction unit (I-unit),
an execution unit (E-unit), a 32K
byte data cache, and a microcode
sequencer. The I-units prefetch
instructions from a 4K byte in¬
struction cache and take oper¬
ands from register stacks or im¬
mediate fields. The pipelining
architecture of the 98x overlaps I-
unit and E-unit activity.

RISC technology is, of course,
key to the system’s performance.
Each CPU uses 528 registers of 32
bits each, implemented in stack
form with 16 levels of 32 regis¬
ters, plus 16 global registers. The
register stack allows parameters
to be passed between stack levels
without data being moved.

The 98x will be shipped in
October, according to Krahling.
Prices vary between $260,000
and $500,000. Field upgrades
for 90x users will cost about
$90,000. Pyramid also has an
extended system in the works, the
98xE, which will add an I/O
expansion bay to support a maxi¬
mum of 256 users.

Pyramid began shipping com¬
puter systems in October 1983. It
had gross sales of $12 million in
1984, and is anticipating about

8 UNIX REVIEW AUGUST 1985

COHERENT™ IS SUPERIOR TO UNIX*
AND IT’S AVAILABLE TODAY

ON THE IBM PC.

Mark Williams Company hasn’t just taken a mini-computer
operating system, like UNIX, and ported it to the PC. We
wrote COHERENT ourselves. We were able to bring UNIX
capability to the PC with the PC in mind, making it the most
efficient personal computer work station available at an
unbelievable price.

For the first time you get a multi-user, multitasking operating
system on your IBM PC. Because COHERENT is UNIX-
compatible, UNIX software will run on the PC under
COHERENT.

The software system includes a C-compiler and over 100 utili¬
ties, all for $500. Similar environments cost thousands more.

COHERENT on the IBM PC requires a hard disk and 256K
memory. It’s available on the IBM XT, and Tecmar, Davong
and Corvus hard disks.

Available now. For additional information, call or write,

Mark Williams Company
1430 West Wrightwood, Chicago, Illinois 60614
312/472-6659

Mark
Williams
Company

COHERENT is a trademark of Mark Williams Company.
•UNIX is as trademark of Bell Laboratories.

Circle No. 16 on Inquiry Card

IL UUNSULlUATIUN AKPLICATIUN NUW. I WAN I A 5IHUUIUHAL rtnrUKlVIANUt ArrLIUAI IUN NUW. I WAN I A rnUrtm Y H/IANAUtlVItN I AhTLIUAIIUN NUW. I W/
KETING APPLICATION NOW.” “I WANT A LINEAR PROGRAMMING APPLICATION NOW.” “I WANT A NUMERICAL DIFFERENCE ANALYZER APPLICATION NOW.” “I WANT AI
HUNTING APPLICATION NOW.” “I WANT A HUMAN RESOURCE MANAGEMENT APPLICATION NOW.” “I WANT A PORTFOLIO MANAGEMENT APPLICATION NOW.” “I WANT /'
UDGETING APPLICATION NOW.
NT A WATER DISTRIB
FAULTREPORTING
ION APPLICATIOI*
NOW.” “I WANT
ENTORY CONTFH
” “I WANT A FIN

R APPLICATION I
NOW.” “I WANT
ORDER PROCE:

IT A PROJECT APPLICATION NOW.” “I WANT A DATA MODELING APPLICATION NOW.” “I WANT A PAYROLL PROCESSING APPLICA1
NOW.” “I WANT A FLUID DYNAMICS APPLICATION NOW.” “I WANT A FINITE ELEMENT ANALYSIS APPLICATION NOW.” “I WANT

T APPLICATION NOW.” “I WANT A MATERIAI
ATION NOW.” “I WANT A SUBSCRIPTION FU
NOW.” “I WANT A 3-D DRAWING APPLICATlI
\i CONSOLIDATION APPLICATION NOW.” “I V
KETING APPLICATION NOW.” “I WANT A LIN
DUNTING APPLICATION NOW.” “I WANT A HI
UDGETING APPLICATION NOW.” “I WANT A f
NT A WATER DISTRIBUTION APPLICATION NC
FAULT REPORTING APPLICATION NOW.” “I V
ION APPLICATION NOW.” “I WANT AN OFFICI
NOW.” “I WANT A FLEET MANAGEMENT APPLICATION NOW.”
ENTORY Cl

‘I WANT
R APPLICA1
NOW.” “I
ORDER PRi

ICAT iitimum /AN
REPO^^^^-
I WAIT

TAPPLICATId
ATION NOW.”
NOW.” “I WAl

\L CONSOLIDA1
KETING APPLH
OUNTING APPLI
UDGETING APPI
NT A WATER DIS
FAULT REPORTI
ION APPLICATION
NOW.” “I WANT A1

'ENTORY CONTROL
” “I WANT A FINANi

TING APPL
TAKEYWO

ION PROCES
ATION NOW.
NT A MATERIAL
SCRIPTION FUL

VING APPLICATI
W,

NE,
HUI
* PI
JOV
wi

IUR PLOTTING APPLICATION NOW.” “I WANT A WAREHOUSE MANAGEMENT APPLICATION NOW.” “I WANT A PI
NT APPLICATION NOW.” “I WANT A FORMS PROCESSING APPLICATION NOW.” “I WANT A PC COMMUNICATmi*
|W.” “I WANT A FLUX MONITORING APPLICATION NOW.” “I WANT AN OUTAGE REPORTING APPLICATION NOW.
TICS ENTRY APPLICATION NOW.” “I WANT A SUPER STAR TREK APPLICATION NOW.” “I WANT A SPREADSHEET
“I WANT A SAFE DEPOSIT APPLICATION NOW.” “I WANT A CROSS-COMPILER APPLICATION NOW.” “I WANT At

mmm now; i want a polynomial fiiiing application now.” "i want a remote tile transit
ON NOW.” “I WANT A JOB COSTING APPLICATION NOW.” “I WANT AN ORDER ANALYSIS APPLICATION NOW.” '

1UCTURAL ENGINEERING APPLICATION NOW.” “I WANT A CALENDAR MANAGEMENT APPLICATION NOW.” “I W
m PLANNING APPLICATION NOW.” “I WANT A BILL OF MATERIALS APPLICATION NOW.” “I WANT A WORK-IN-
'PUCATION NOW.” “I WANT A CRITICAL PATH METHOD APPLICATION NOW.” “I WANT A CORRESPONDENCE COf
WANT A FIXED ASSETS APPLICATION NOW.” “I WANT A TELEPHONE CHARGE-BACK APPLICATION NOW.” “I WA>
CTURAL PERFORMANCE APPLICATION NOW.” “I WANTA PROPERTY MANAGEMENT APPLICATION NOW.” “I W
MMING APPLICATION NOW.” “I WANTA NUMERICAL DIFFERENCE ANALYZER APPLICATION NOW.” “I WANT A I
RCE MANAGEMENT APPLICATION NOW.” “I WANTA PORTFOLIO MANAGEMENT APPLICATION NOW.” “I WANT/
JCATION NOW.” “I WANT A DATA MODELING APPLICATION NOW.” “I WANT A PAYROLL PROCESSING APPLICAlH
A FLUID DYNAMICS APPLICATION NOW.” “I WANTA FINITE ELEMENT ANALYSIS APPLICATION NOW." “I WANT
'JR PLOTTING APPLICATION NOW.” “I WANT A WAREHOUSE MANAGEMENT APPLICATION NOW.” “I WANT A P/
IT APPLICATION NOW.” “I WANT A FORMS PROCESSING APPLICATION NOW.” “I WANTA PC COMMUNICATION

I WANTA FLUX MONITORING APPLICATION NOW.” “I WANT AN OUTAGE REPORTING APPLICATION NOW.

mmmmmmjt ^adshee-

EMEN1
NOW.”
INGAPP

R APPLICATION NOW.” “I WANT A KEYWORD RETRIEVAL APPLICATION NOW.
LICATION

OMPILER APPLICATION NOVI
I NOW.” “I WANTA REMOTE
n ORDER ANALYSIS APPLIC/

GEMENTAPP-
ATION NOW.’ —
“I WANT AC

E-BACK APPL
lEMENT APPI
R APPLICATlI

«■■■. MTAPPLICAT
A PAYROLL Pi
Lysis applicj
[APPLICATIOI
W.” “I WANT/
SE REPORTIN

——“N NOW.” “I \|
R APPLICATlI

|N NOW.
CHARG

r MANAI
NALYZI

‘I WANT
NTANAI

\GEMEN
riON NO'
\N OUTA
PLU
COMPILf

NOW.” “I WANT A TRANSACTION PROCESSII
ORDER PROCESSING APPLICATION NOW ” “

T APPLICATION NOW.” “I WANT A MATERIAL
ATION NOW.” “I WANT A SUBSCRIPTION FUL
I NOW.” “I WANT A 3-D DRAWING APPLICAT E
\L CONSOLIDATION APPLICATION NOW.” “I l
IKETING APPLICATION NOW.” “I WANT A UN
OUNTING APPLICATION NOW.” “I WANT A HI
UDGETING APPLICATION NOW.” “I WANTA I
NT A WATER DISTRIBUTION APPLICATION NO
FAULT REPORTING APPLICATION NOW.” “I Vi
ION APPLICATION NOW.” “I WANT AN OFFICI

I NOW.” “I WANT A FLEET MANAGEMENT API
/ENTORY CONTROL APPLICATION NOW ” “I \
” “I WANT A FINANCIAL REPORTING APPLIC

:R APPLICATION NOW.” “I WANT A KEYWORI
I NOW.” “I WANT A TRANSACTION PROCESSI
: ORDER PROCESSING APPLICATION NOW.’
IT APPLICATION NOW.” “I WANTA MATERIAL REQUIREMI
:atiqn NOV
1 NOW.” “I |
ALCONSOL
WETING AF
OUNTING /
iudgetingE
INTAWATEI
FAULT REP

riON APPLNj
d NOW.” “I]
i/ENTORY (
!.” “I WANTl
ER APPLICA
d NOW.” “I
E ORDER PP
XI APPLICATI
NATION NOVI
d NOW.” “I f

I WANT M
ILE TRANSFE

_ITION NOW.” 1
mmm now.” “i w

IT A WORK-IN-,1
RRESPONDENCE COI

ICATION NOW.” “I WA
JCATION NOW.” “I W*|
)N NOW.” “I WANTA
TON NOW.” “I WANT
ROCESSING APPLICA1
ITION NOW.” ‘‘I WANT
d NOW.” “I WANTA Pi|
i PC COMMUNICATE
G APPLICATION NOW.1
l/ANTASPREADSHEE'
)N NOW.” ‘TWANTAP

I WANT A REMOTE FILE TRANSFEl I WANTA POLYNOMIAL FITTING APPLICATION NOW.
r TING APPLICATION NOW.” “I WANT AN ORDER ANALYSIS APPLICATION NOW., *
LlCATION NOW.” “I WANT A CALENDAR MANAGEMENT APPLICATION NOW.” “I W
low.” “I WANTA BILL OF MATERIALS APPLICATION NOW.” ‘1 WANT A WORK-IN-
JRITICAL PATH METHOD APPLICATION NOW.” “I WANT A CORRESPONDENCE CQ
ATION NOW ” “I WANT A TELEPHONE CHARGE-BACK APPLICATION NOW.” “I WA

E APPLICATION NOW.” “I WANT A PROPERTY MANAGEMENT APPLICATION NOW.” “I WI
dOW.” “I WANT A NUMERICAL DIFFERENCE ANALYZER APPLICATION NOW.” “I WANT AI
PLICATION NOW.” “I WANT A PORTFOLIO MANAGEMENT APPLICATION NOW.” “I WANT/
,NTA DATA MODELING APPLICATION NOW.” ul WANTA PAYROLL PROCESSING APPLICA!
PPLICATION NOW.” “I WANT A FINITE ELEMENT ANALYSIS APPLICATION NOW.” “I WANT
ATION NOW.” “I WANT A WAREHOUSE MANAGEMENT APPLICATION NOW.” “I WANT A Pi
.” “I WANT A FORMS PROCESSING APPLICATION NOW.” “I WANTA PC COMMUNICATIOr
MONITORING APPLICATION NOW.” “I WANT AN OUTAGE REPORTING APPLICATION NOW*
ION NOW.” “I WANT A SUPER STAR TREK APPLICATION NOW.” “I WANT A SPREADSHEET
)SIT APPLICATION NOW.” “I WANT A CROSS-COMPILER APPLICATION NOW.” “I WANT AN
I WANTA POLYNOMIAL FITTING APPLICATION NOW ” “I WANT A REMOTE FILE TRANSFEl
|J0B COSTING APPLICATION NOW.” “I WANT AN ORDER ANALYSIS APPLICATION NOW.
dG APPLICATION NOW.” “I WANT A CALENDAR MANAGEMENT APPLICATION NOW.” ‘1 W|

ill
ICATIOJ

p

PLICA
ICAT^

I WANT AP

WORK-IN
DENCE COi
W.” “I WA

|OW.” “I W/
‘I WANTA

I WANT
G APPLICA!

“I WANT
I WANT A Pi

COMMUNICATION
d OUTAGE REPORTING APPLICATION NOW.
LICATION NOW.” “I WANT A SPREADSHEf

COMPILER APPLICATION NOW.” “I WANT Ali
GN WANTA REMOTE FILE TRANSFEl

dALYSIS APPLICATION NOW.
ENT APPLICATION NOW.” “I V\j
N NOW.” “IWANTAWORK-ltf-
fANT A CORRESPONDENCE CO

CK APPLICATION NOW.” “IWA
I WANTA PROPERTY MANAGEMENT APPLICATION NOW.” “I Wi

I WANTA
AL CONSOLIDATION APPLICATION NOW.” “I WANTA STRUCI URAL PERFORMANCE APPLICATION NOW.
IKETING APPLICATION NOW.” 1 WANTA LINEAR PROGRAMMING APPLICATION NOW” 1 WANTA NUMERICAL DIFFERENCE ANALYZER APPLICATION NOW.
OUNTING APPLICATION NOW. ” ‘7 WANTA HUMAN RESOURCE MANAGEMENT APPLICATION NOW. ” ‘7 WANTA PORTFOLIO MANAGEMENT APPLICATION NOW ” ‘7 WANT)

N0W” 1 WANTA PROJECT APPLICATION NOW.” “I WANTA DATA MODELING APPLICATION NOW.” “I WANTA PAYROLL PROCESSING APPLICA
cLft^lZEP™5,BUT,0N APPLICATION NOW.” “I WANT A FLUID DYNAMICS APPLICATION NOW.” “I WANTA FINITE ELEMENT ANALYSIS APPLICATION NOW.” “I WAN
FAULT REPORTING APPLICATION NOW.” “I WANT A CONTOUR PLOTTING APPLICATION NOW ” “I WANT A W/ARFHOllSF manaofmpmt appi ipatiom hinw ” “i \a/amt a dI

VMS. WHEN THE ONLY THING YOUR
USERS WANT IS EVERYTHING, NOW.

If "I want it now” seems like

the only thing you ever hear from

your users - and if your applica¬

tions backlog is telling you that

“now” is going to be a long way

off - you need to know about our

VMS™ Virtual Memory System

software.

Our VMS software, which

was designed exclusively with

VAX™ computer systems, is far

more than a mere operating sys¬

tem. It is a complete operating

environment. One that can en¬

compass all the ways you use

computers. To get it done, now.
The VMS operating environ¬

ment provides you with the in¬

dustry’s most complete set of

utilities and software products

for program development and

system management. Interac¬

tive, realtime, even background

batch applications can be devel¬

oped with ease and speed.

Everything you need for

corporate-level applications is

included. Advanced office

automation software. Proven

transaction processing capabili¬

ties. Comprehensive CODASYL-

compliant and relational data¬

base managers. User-friendly

query tools and an integrated
data dictionary. Plus the indus¬

try’s most complete set of local

and wide area networking facili¬

ties, allowing you to exchange

data files and cooperate with

systems made by IBM - via

SNA gateway - as well as many

other vendors.

I(MS PUTS YOUR
PROGRAMMERS IN
THE FAST LANE.

You’ve heard a lot of prom¬

ises about increasing program¬

mer productivity over the years.

After all, the application backlog

in most companies has reached

18 months to 2 years. And the

demand for new applications is

THE VMS OPERATING ENVIRONMENT

RMS

OATATRIEVE

COO

DBMS

Rdb/VMS

TDMS

FMS

DECsIlde

DECgraph

DEC/CMS

DEC/MMS

ACMS

ALLIN-1

DECalc

DECmall

DEChealth

DECspell

Mail

Text Editors

Librarian

Linker

Symbolic Debugger

Analyze/Media

Monitor

Sort/Merge

Commons Run¬
Time Library

Help

Set/Show

File Differences

File Transfer

Remote Terminal
Capability

OECnet

Internet

Packetnet

Ethernet

DECnetySNA
Gateway

DATATRIEVE

DX

LAT

APL

BASIC

BLISS

C
COBOL

CORAL 66

DIBOL

DSM

FORTRAN

Lisp

Macro

PASCAL

PL/1

RPGII

ACMS

Rdb/VMS

VAXIIRSX

GKS
RGL

DEC/SHELL

DEC/TEST
MANAGER

LANGUAGE
SENSITIVE EDITOR

PERFORMANCE
AND

COVERAGE

ANALYZER

DEC/CMS

DEC/MMS

Vrx Back/Restore

Error Logging
and Print

increasing by some 50 percent

a year. So there’s hardly a more

important subject.

Digital’s VMS software does

more to increase programmer

productivity than any other sys¬

tem can. Because it combines

everything you need for applica¬

tion design, development and

maintenance into a single, inte¬

grated operating environment.

You’ll have the industry’s best

symbolic debugger to work with.

A command language so flexi¬

ble it lets you stop application
execution and enter new com¬

mands at any point, and even

develop your own commands

through its macro facility. A com¬

mon runtime environment that

lets you reuse code instead of

rewriting it. And more advanced

languages than any other sys¬

tem - some 16 in all, including

Ada®, C, COBOL, FORTRAN,

and Lisp - all of which you can

combine in a single program

through the common calling

standard.

This gives you a distinct ad¬

vantage in team development

projects. Each developer can

use the language best suited to
his or her talents and to the task.

Large, complex projects such

as transaction processing appli¬

cations can be designed, devel¬

oped, maintained and managed

easily.

The end result - better code

in less time. And satisfied, pro¬

ductive users at every level, from

the factory floor to the executive
suite.

The point is, many other sys¬

tems promise you ease of use,
up to a certain point. The VMS

environment simplifies devel¬

opment not only for small, ad

hoc projects - but also when

your applications reach highly

sophisticated, complex levels.

WITH VMS, FLEXIBILITY
IS BUILT IN._

You get another big advan¬

tage when you develop your

applications with the VMS oper¬
ating environment: the range

of hardware you can run them

on. Namely, our VAX computer

family, the industry standard for

32-bit computing.

The VMS environment spans

the entire VAX systems family,

from the smallest MicroVAX™
system to the largest VAX 8600™
and multiprocessor VAXcluster™
systems. This is the biggest soft¬

ware-compatible growth path

in the world. And with the data

security mechanisms built into

VMS software, increased access

doesn't mean compromised

security.

If you need UNIX® software

capabilities, the VMS operating

environment can readily provide

them through the VNX™ option.

And if you need the convenience

of applications packages, you’ll

have over 2,000 to choose from

- created for VMS software by

Digital and independent ven¬

dors. Your choices are never lim¬

ited when you start with the VMS

environment.

MSf ENGINEERED
MEANS ENGINEERED
TO A PLAN._

Digital’s VMS operating envi¬

ronment, like all Digital hardware

and software products, is engi¬

neered to conform to an overall

computing strategy. This means

that our systems are engineered

to work together easily and ex¬

pand economically. Only Digital

provides you with a single, inte¬

grated computing strategy di¬

rect from desktop to data center.

For more information about

how our VMS operating envi¬

ronment can help you cut your

applications backlog, contact

your local Digital sales represen¬

tative. Or call 1-800-DIGITAL,

ext. 219.

THE BEST ENGINEERED
COMPUTERS
IN THE WORLD.

QDSDDSD
Circle No. 59 on Inquiry Card

© Digital Equipment Corporation 1985. Digital, the Digital logo, VMS, VAX. VNX. MicroVAX, VAX 8600 and VAXcluster are trademarks ol Digital Equipment Corporation.

IBM is a trademark of International Business Machines Corporation. Ada® is a trademark of the U .S. Government Department of Defense. UNIX® is a trademark of AT&T Bell Laboratories.

U THE MONTHLY REPORT

The 98x supermini from Pyramid
Technology Corporation.

$35 million in 1985, predicated
on the success of the 98x. Pyra¬
mid’s first system was the 90x, a
32-bit supermini that Krahling
claimed was the first RISC ma¬
chine. The 90x has 2.5 times the
power of a VAX 780; a multi¬
processor system, the 90Mx, re¬
portedly provides 4.2 times VAX
780 power (and doesn’t need to be
stored in silos). But the 90Mx has
a master-slave multiprocessor
environment.

Krahling says there are 5000
VAXen on order, with about 20
percent of that total (1000) run¬
ning UNIX. Pyramid thinks of
itself as the number two supplier
in superminicomputers, and will
certainly try harder to gain as
much of that 1000-system DEC
market as it can. It plans to sell 80
percent through its own sales
force, according to Krahling.

AT&T CONTINUES
SYSTEM V PUSH

AT&T continued its aggressive
efforts to promote System V as the
“UNIX system for business’’ by
showing off its Remote File Sys¬
tem (RFS) at the Usenix Confer¬
ence in Portland. Demonstrated
on 3B2 hardware, the system was
described as “Streams-based”,

and capable of providing “proto¬
col and media independence’’
within System V.

The Remote File System pro¬
vides transparent access to direc¬
tories, files, special devices, and
named pipes. An administrator
may select directories in the local
file tree to advertise to remote
machines (by using the adv com¬
mand). Other users can then use
the mount command to mount
advertised directories at any
place in their local file tree (see
Figure 1). Its name server fea¬
tures machine-independent re¬
source naming using a hierarchi¬
cal domain-naming convention.
Its recovery mechanism ensures
that no single machine failure
will bring down the network.

Administrative support will in¬
clude: selective resource sharing

The Remote File System
provides transparent
access to directories,
files, special devices,

and named pipes.

that allows administrators to ad¬
vertise any directory for read/
write or read-only access, and to
provide lists of machines autho¬
rized to mount specific directo¬
ries; machine authentication,
allowing administrators to deter¬
mine passwords to aid in identifi¬
cation of systems requesting re¬
mote mounts; user and group ID
mapping (providing such options
as the ability to map all remote
IDs to a single remote ID, thus
maintaining identical IDs across
a group of machines—with se¬
lected exclusions—and the use of
explicit mapping tables); and a

monitor that allows report gen¬
eration to separate remote from
local activity.

The rumor is that AT&T will
release the Remote File System
on or before the Anaheim Uni-
Forum show in February 1986.

A company already in the dis¬
tributed file system arena, Sun
Microsystems, is undaunted by
the recent AT&T developments.
Bill Keating, marketing manager
for Sun’s Network File System
(NFS), first pointed out that “this
is not the first time (AT&T has)
talked about (their remote file
system). Who knows when it will
really be available?” Keating
pointed out that Sun’s NFS can be
implemented with non-UNIX sys¬
tems as well. “Our intent is to
provide a system that allows
interconnection among heteroge¬
neous computers and operating
systems. We’re after DEC, and
we’re after the IBM PC, just to
name a couple.” He referred to
NFS as “a superset” of distribut¬
ed file systems because of its
ability to be implemented across
the computer spectrum.

But design flexibility is not as
important as third-party support
these days, particularly when the
competition comes from a com¬
pany the size of AT&T. Keating
conceded that, saying that Sun
“will become compatible with
whatever AT&T offers,” but he
also said Sun “is trying to make
NFS a standard (in its own right)
by getting other companies to
adopt it.” He said Celerity Com¬
puting has been added to the list
of NFS supporters—a list that
already included Pyramid, Gould,
and Mt. XINU. The latter an¬
nounced a few months ago that it
would implement NFS on VAXen
running 4.2BSD.

For its part, AT&T claims not to
be in direct competition with Sun.
Spokesperson Lawrence Brown
said, “(NFS and the Remote File
System) are really targeted at

12 UNIX REVIEW AUGUST 1985

NAME THE MOST
winy used
INTEGRATED

OfHCE AUTOMATION
SOFTWARE FOR
UNDCSYSTEMS.
"UNPUXr

YOU'VE GOT IT!
User satisfaction is the primary reason no other product can

make this claim. Already in its second generation, UNIPLEX II

offers features designed to meet the requirements of the most

demanding user.

The beauty of UNIPLEX II is its simplicity. One personality and

one command structure throughout the program provide an ease

of use never before experienced with UNIX application software.

UNIPLEX II integrates sophisticated word processing,

spreadsheet, and relational database applications into a

powerful one-product solution.

UNIPLEX II uses termcap, so it can run on virtually any

computer terminal. “Softkeys” allow the user to define function

keys which are displayed on the 25th line of most terminals to

provide versatility and ease of use.

All this at a price you’d normally pay for a single application

software package.

UNIPLEX II is available immediately from UniPress Software,

the company that’s been at the forefront of quality UNIX

software products longer than anyone else.

Call today! Once you’ve got it, you’ll see why UNIPLEX II is

the most widely used integrated office automation software for

UNIX-based systems.

OEM terms available. Mastercard and Visa accepted!

Write to: UniPress Software, 2025 Lincoln Hwy., Edison, N| 08817

or call: 1-800-222-0550 (outside NJ) or 201-985-8000 (in NJ);

Telex: 709418. European Distributor: Modulator SA, Switzerland

41 31 59 22 22, Telex: 911859.
UNIX is a trademark of AT&T Bell Laboratories. Uniplcx II Is a trademark of Unlplcx Integration Systems

MH/AMHA&ewrt/e
^ Anrohfxpc 73oo

4 36 seaess
IniPressSoftuuare

)bur Leading Source for UNIX'Software

Circle No. 61 on Inquiry Card

W THE MONTHLY REPORT

MACHINE A MACHINE B

C ,o
[usr o i-"(3 0

/
0'”

file 1

Figure 1 — Diagram representing the transparent access capability of
AT&T's Remote File System.

different markets.” Brown thinks
Sun is more interested in “the
engineering workstation” than
the multiuser business office sys¬
tem stressed by AT&T—a natural
assumption given Sun’s commit¬
ment to 4.2BSD. Brown praised
NFS as a “well-designed system”.
But he pointed out that the Re¬
mote File System will not “sacri¬
fice UNIX functionality,” as is the
case with NFS.

THE REAL WORLD LOOMS

There was a scene in the movie
Woodstock where well-known
Hog Farmer and Berkeley-San
Francisco cultural icon Wavy
Gravy implored those who “don’t
think capitalism is too weird” to
buy some hot dogs from a poor
soul whose tube steak stand had
burned to the ground. Certainly, a
similar feeling was in the air as
hackers mingled in Portland at
what is becoming an increasingly
commercial Usenix Conference.

The dreaded “C-words”, cap¬
italism and commercialism, are
inexorably wending their way

The dreaded "C-

words", capitalism and

commercialism, are

inexorably wending

their way into the

UNIX community.

into the UNIX community. One
needed look no further than the
AT&T army swarming about its
dominant booth in the center of
the exhibition. Even some of the
technical sessions were more like
“the gospel according to (enter
company name)” than objective
discourses. To be sure, some of
the sessions were still of the old
school. There was substance and
humor enough for those who were
persistent enough to ferret it out.

But there’s big bucks to be had

in UNIX systems, and like Wavy
Gravy, there’s more than a couple
of folks who think that latching
onto a few of those bucks might
not be so weird after all.

CRAY-2 RUNS SYSTEM V

Having $17.6 million doesn’t
make you as rich as it used to, but
it’s enough to make you the proud
owner of a Cray-2 supercom¬
puter, the new UNIX-based mon¬
ster from Cray Research, Inc. The
Cray-2 is designed to deliver as
much as 12 times the perfor¬
mance of the Cray 1 and is the
first (and only) system of this size
to run System V. Previously, Cray
ran its own operating system,
COS, on its systems. (The com¬
pany continues to support COS,
but it’s also reportedly planning
to offer UNIX on its XMP com¬
puter sometime next year.)

The Cray-2 can consume just
about anything for breakfast. Its
clock cycle is 4.1 nanoseconds,
and main memory takes in 256
million 64-bit words, or about
1.6 gigabytes. Main memory me¬
gabytes are divided into four
quadrants with 128 interleaved
banks. The CPU has one fore¬
ground and four background pro¬
cessors. The four background
processors, each said to be more
powerful than the Cray-1 CPU,
perform scalar and vector calcu¬
lations, and can operate either
independently or jointly. The
CPU has 320 plug-in modules,
each holding 750 integrated cir¬
cuit packages. There are about
240,000 chips in each module.

To keep all this horsepower
cool, a liquid-immersion, fluoro¬
carbon-based cooling system
is used. The inert fluid is circu¬
lated throughout the CPU cabi¬
net, where it comes into direct
contact with the integrated cir¬
cuit packages.

Roger Strukhoff is the Associate
Editor of UNIX REVIEW. ■

14 UNIX REVIEW AUGUST 1985

////////////////////
/////////; / /

V///

/ / /

/ / /
///y
V//////
/// ////,/.

y /////// / / / /// /

/
/ /

///// ///////////
/ /

V/////// /////

/ / /

/
/ /

trademarks ol UmPress EMACS & Ml ISP. UmPress Solrware. Inc. UNIX &
Al&T 3B Senes. Am Ben laboratories VAXHMS & ftamto* WO* DytH
Eouipmeni Cvp. MS DOS. MkiosoH Cvp . WordStar. MicroPro UniPressSoftuuare
Circle No. 10 on Inquiry Card)bur Leading Source for UNIX Software

THE HUMAN
FACTOR

Prototyping a memorandum database

by Richard Morin

Paper is miserable stuff. It piles
up everywhere, is impossible to
organize well, and makes one
irritable by its mere presence.
The real problem is not with
standard-sized pieces of paper,
though. Filing cabinets, binders,
and other containers hold these
reasonably well. It’s the little
scraps of paper that are the real
enemy—particularly those that
can’t be handled, filed, or thrown
away.

This column previously has
offered an overview of UNIX tools
suitable for text handling (Au¬
gust, 1984). It also has touted the
use of prototyping techniques un¬
der UNIX (May, 1985). Finally, it
has speculated on the uses of
daemons and hashed tables (July,
1985). The current column fol¬
lows in the same vein, describing
the prototyping of a UNIX tool for
handling memoranda, and specu¬
lating about future work.

MEMO

The first version (see Figures
la and lb) of memo is more a
proof of concept than a usable
tool. Still, it is a working program,
able to copy text from standard
input (normally taken from the
keyboard and terminated with a
CTRL-D) to a file named . memo in
the user’s home directory. It even
adds a time stamp and some
formatting text to the message.
Since the command can be in¬

voked from anywhere in the file
system, it can be used to make
small notes without changing
directories. The collected memos
can then be perused, annotated,
or even (gasp) acted upon at the
user’s leisure.

The principal limitation is that
everything ends up in the same
file, $HOME/.memo. It would be
much handier to have memo file
text under specified topics, as:

% memo thf

This would add text to a file by
the name of $HOME/memos/thf.
Memos of a general nature could
default to the topic misc, stored in
SHOME/memos/misc. A second
version of memo, shown in Figure
2, implements the new option.

If the user puts a link in the
memos directory, data will be
stored in the file specified by the

link. This means that the user
can use links in the memos
directory to funnel text to files in
arbitrary locations. This is an
interesting, useful, and complete¬
ly serendipitous side effect. Part
of UNIX’s fertility lies in the
number of such “freebies” it
gives us.

The tool itself still lacks a bit of
polish and bulletproofing, howev¬
er. It ignores extra arguments,
and crashes if a user tries to
invoke it without first creating
the memos directory. Although a
README file might alert the user
to these problems, a better an¬
swer is to make the program more
robust and self-sufficient.

A third version, shown in Fig¬
ure 3, automatically creates a
memos directory for the user.
Being defensively programmed, it
first checks for the existence of a
file named memos. It also per¬
forms a simple argument check,
requiring either zero or one
arguments.

Now that we have a version
that can be safely handed to a
naive user, we could easily quit.
The code is small, relatively sim¬
ple, and does its job well. Unfortu¬
nately, creeping featurism once
again rears its ugly head. Why not
use the UNIX hierarchical file
system to handle sub-topics?

A fourth version, which is
shown in Figures 4a and 4b, does
this, building a tree of directories

16 UNIX REVIEW AUGUST 1985

: memo.vl - file memo

m=$H0ME/.memo

u=-

date >> $m * date stamp

echo $u >) $m # underline

echo >> $m * blank line

cat >> $m * copy stdin

echo >) $m n blank line

Figure la — A rudimentary
memo shell script.

Thu Jan 3 13:10:31 PST 1985

This is a test...

Thu Jan 3 13:12:21 PST 1985

This is another test..
With a second line...

Figure lb — Output from the

script in Figure la.

: memo.v2 - file memo under topic

topic=$HOME/memos/${l-misc}

date >> $topic

echo $u >> $topic

echo >> $topic

cat >> $topic

echo >> $topic

Figure 2 — An enhanced version
of memo capable of filing entries

by topic.

Y///A /,

Another in a series of
productivity notes on UNIX"

software from UniPress.

y//. / /
/

/

/ / /
/>

Subject: A complete Kit of compilers,
cross compilers and assemblers.

The Amsterdam Compiler Kit is the

only C and Pascal UNIX package

which includes a wide range of native

and cross tools. The Kit is also easily

modifiable to support custom targets.

/A A / / / / /

V/A

/

Features:

■ C and Pascal compilers (native

and cross) for UNIX machines.

■ Host and target machines include

VAX'* 4.1/4.2 BSD, PDP"*-11/V7,

MC68000"* and 8086'* Cross

assemblers provided for 80807 Z807

Z80007 80867 68007 68097

680007 6502 and PDP-11.

■ The Kit contains complete

sources * of all programs, plus com¬

prehensive internals documentation

on how to make modifications needed

to add a new program language or

new target machine.

*A source UNIX or C license is required

from AT&T.

UNIX is a Itademi’k ol AJ&T Bell Laboraloncs VAX&PDP 11 arc trademarks ol
Orgrlal Equipment Corp MC68000. 6800 6 6809 are trademarks ol Motorola
Corp 8080 5 8086 are trademarks ol Intel Corp 180 & Z8QOO are trademarks ol
/rtoq. Inc

///////,

Vs
/ / / / COMPILERS

J
/

Price: vx
Full Source System $9950

Educational Institutions 995

Selected binaries are available - contact

us with your machine type.

OB/. V
For more information on these and

other UNIX software products, call or

write: UniPress Software, Inc., 2025

Lincoln Hwy., Edison, NJ 08817.

Telephone: (201) 985-8000. Order

Desk: (800) 222-0550 (Outside NJ).

Telex: 709418. Japanese Distributor:

SofTec 0480 (85) 6565. European Dis¬

tributor: Modulator SA (031) 59 22 22

OEM terms available.

Mastercard/Visa accepted.

AMSTERDAM
COMPILER
KIT

/

IniPfessSoftujare
)bur Leading Source for UNIX Software

Circle No. 17 on Inquiry Card

w THE HUMAN FACTOR

to handle topics and subtopics
specified by the user. It also
initializes and generalizes topics
automatically, detecting and han¬
dling conflicts in naming. As¬
sume that the user has typed:

% memo thf/cols

and has entered the appropriate
memorandum. The program will
append the output text to
SHOME/memos/thf/cols.

The main script (Figure 4a) will
perform the functions of previous
iterations of memo, adding only
some syntax checking, a call to a
subsidiary script (see Figure 4b),
and a test for whether the topic
has been generalized. The subsid¬
iary script will create any needed
directories, and rename conflict-

It's the little scraps of

paper that are the real

enemy—particularly

those that can't be

handled, filed, or

thrown away.

ing topic files, creating files such
as $HOME/memos/thf/mtsc. It
will also tell the main script
which directory to use for the
text.

As you can see, the code has
grown a bit, from 10 to almost
100 lines. Still, it does quite a bit,
and it is fairly bulletproof and
convenient. So much for the
problem of storage. Now, what
about retrieval?

RETRIEVAL

The Summer 1985 proceed¬
ings of the Usenix Conference
and Exposition contains, along
with other interesting items, a
paper entitled: “UNIX tools for a
Personal Database” by Michael J.
Hawley of Lucasfilm, Ltd. The
paper describes a set of tools for
finding files according to the
keywords contained therein. The
tools use a hashed inverted index,
linking each keyword to the most

NEW UNIX
SYSTEMS
UTILITY
SOFTWARE
AVAILABLE
NOW!
For more information,
call us at
(703)734-9844.

SPOOLING
& QUEUE
MANAGEMENT

SPR SUPER SPOOLER:” A full-
feature print spooling and general
purpose queuing system featuring:
multiple device support, multiple
queues, manual or automatic device
assignments, complete tailorability.
and background job scheduling.

TELEX
COMMUNICATIONS
MANAGEMENT

S-TELEX:™ A full-feature integrated
hardware and software telex commu¬
nication management system. Use as a
stand-alone system or integrate with
your word processing system. Features:
automatic dialing, answer verification,
message exchange, and recording of
all status. Concurrent message trans¬
mission and reception. Conversational.

APPLICATION
DEVELOPMENT

SSL:™ A powerful terminal-inde¬
pendent screen manager and appli¬
cation development system with many
automatic functions such as menu
formatting, screen and table handling,
data base calls, and more.

EDITORS

SSE:™ A full screen editor for UNIX
developers and non-technical end
users. Features type-it-as-you-wish-
to-see-it text entry, typewriter-like
margin settings, and a full set of text
editing functions. Easy to learn.

These products are available now for
most UNIX or UNIX-derivative oper¬
ating systems, including System V.
4.2 BSD. 4.1 BSD. Xenix, Version 7.
System III. Uniplus, and others.

’UNIX is a trademark of AT&T Bell Laboratories.

LNITECH
SOI I W A R I 8330 OLD COURTHOUSE RD. SUITE8 0 0 VIENNA. VIRGINIA

18 UNIX REVIEW AUGUST 1985

Circle No. 18 on Inquiry Card

: memo.v3 - file memo under topic

if test $# -gt 1; then # too many args?
echo Usage: memo [topic] ; exit 1

fi

if test -f $H0ME/memos; then n file conflict?
echo "A file named $HOME/memos already"
echo "exists, memo will not create"
echo "the $H0ME/memos directory until"
echo "the file is removed or renamed."
exit 2

fi

if test ! -d $H0ME/memos; then # missing dir?
mkdir $H0ME/memos

fi

topic=$HOME/memos/${1-misc}

date)> $topic
echo $u >> $topic
echo >> $topic
cat >> $topic
echo >> $topic

Figure 3 — A version of memo for

automatically creating a “memos”
directory for output.

recent 500 (or so) references
found.

The principal tool is a printing
utility, p, which searches the
index for logical combinations of
keywords. It has options that
allow the printing of file data,
names, and so forth. Another
tool, grok, expands the scope of
the search by using multiple
indices, adding files to the cur¬
rent index, and performing sever¬
al other functions. Finally, a
number of low level tools assist in
managing the system and build¬
ing new applications.

Automated keyword indexing
is a nifty facility that handles
many searching problems clean¬
ly. The only problem, a lack of an
easy means for users to impose
structure on their databases, can

: memo.v4 - file memo under {sub-[topic

* Usage: memo [topic[/subtopic...]]
n

n The entered text is stored in a file named

n topic(/...) in $H0ME/memos/. The default

n (sub-)topic is misc. Topic generalization

* is handled automatically.
n

» By appropriate use of symbolic and/or hard

* links, actual file locations may be elsewhere.
*

usage= Usage: memo [topic[/subtopic...]]
if test $# -gt 1; then * too many arguments?

echo $usage; exit 1

fi

dir=$HOME/memos

if test -f $dir; then * conflicting file?
echo "$dir already exists as a file, so memo"

echo "cannot create it as a directory."; exit 2
fi

if test ! -d $dir: then # missing directory?
mkdir $dir

fi

topic=$|l-misc} n handle topic details
if test -n " echo $topic i sed

^ * tack on a trailing &
/]*/@@)g: « kill off .../s

s@Y/]f/]*@@~" * km off ...&s
then echo $usage: exit 3; fi # syntax error

cd memo.v4.s $topic~

topic= echo $topic i sed
S@*/@§T n kill off .../$

if test -d $topiC; then * topic is general?

topic=$topic/misc

fi

date)> $topic
echo $u)> $topic
echo)> $topic

cat >> $topic
echo >> $topic

Figure 4a — A version of memos that shows what comes of creeping
featurism.

be handled by memo. Truly ad¬
venturous types may wish to
include all sorts of text files in the

indexing game. If the indexing
takes too much time, let a daemon
do it at low priority.

UNIX REVIEW AUGUST 1985 19

U THE HUMAN FACTOR

: memo.v4.s - handle general topics

next= echo $1 i
sed * kill off \..$
s@/[/]*$@@" « kill off /...$

base=
slash=

md=$HOME/memos
cd $md

while test -n "$next"; do

this= echo $next i sed

* kill off /...$
newbase=$base$slash$this

next= echo $next i sed "
S * kill off "...
s @/m" * kill off 1st /

if test -f $this » conflicting file?
then

mv $this memotmp

mkdir $this
mv memotmp $this/misc

fi

if test I -d $this » no directory?

then
mkdir $this

fi i

cd $this
base=$newbase

slash= /
done

echo mdslash$base # for memo.v4’s cd

Figure 4b — A subsidiary script for memo capable of filing memoranda

according to topic and subtopic.

CEEGEN-GKS
GRAPHICS

SOFTWARE in C
for UNIX

□ Full implementation of
Level 2B GKS.

n Outputs, Inputs, Segments,
Metafile.

□ Full Simulation for Linetypes,
Linewidths, Fill Areas,
Hatching.

□ Circles and Arcs, Ellipses
and Elliptic Arcs, Bezier
Curves.

□ Ports Available on all
Versions of UNIX.

□ CEEGEN-GKS is Ported to
Gould, Masscomp, Plexus,
Honeywell, Cadmus,
Heurikon, Codata, NBI,
NEC APCIII, IBM-AT, Silicon
Graphics, Pyramid, Tadpole
Technology, Apollo, AT&T
3B2, AT&T 6300, DEC VAX
11/750,11/780 (4.2, 5.2),
NCR Tower.

□ CEEGEN-GMS GRAPHIC
MODELING SYSTEM, An
Interactive Object-
Oriented Modeling Product
for Developers of GKS
Applications. CEEGEN-GMS
and GKS Provide the
Richest Development
Environment Available on
UNIX Systems.

□ Extensive List of Peripheral
Device Drivers Including
Tektronix 4010, 4014, 4105,
4109, HPGL Plotters,
Houston Instruments,
Digitizers, Dot Matrix
Printers and Graphics CRT
Controllers.

□ END USER, OEM,
DISTRIBUTOR DISCOUNTS
AVAILABLE.

CEEGEN CORPORATION
20 S. Santa Cruz Avenue. Suite 102
Los Gatos, CA 95030
(408) 354-8841
TLX 287561 mlbx ur

EAST COAST:
John Redding & Associates
(617) 263-8206
UNITED KINGDOM:
Tadpole Technology PLC
044 (0223) 861112
UNIX is a trademark of Bell Labs.
CEEGEN-GKS is a trademark of
Ceegen Corp.

Circle No. 19 on Inquiry Card

20 UNIX REVIEW AUGUST 1985

Prototyping has a way of be¬
coming addictive. Each new fa¬
cility suggests others, and the
prototyper may never be able to
say that an application is really
“done”. Still, any working snap¬
shot of a prototyped system can
be used or even shipped, and the
users need not know all of the
prototyper’s dreams.

Mailfor Mr. Morin can be sent

to the Canta Forda Computer

Lab, PO Box 1488, Pacifica, CA
94044.

Richard Morin is an independent
computer consultant specializing in
the design, development, and docu¬
mentation of software for engineer¬
ing, scientific, and operating sys¬
tems applications. He operates the
Canta Forda Computer Lab in Paci¬

fica, CA. ■

YOU CHOOSE:
Terminal Emulation Mode

MLINK CU/UUCP

Menu-driven Interface Yes
Expert/brief Command Mode Yes Yes
Extensive Help Facility Yes
Directory-based Autodialing Yes
Automatic Logon Yes Yes
Programmable Function Keys Yes
Multiple Modem Support Yes Yes

File Transfer Mode

Error Checking Protocol Yes Yes

Wildcard File Transfers Yes Yes
File Transfer Lists Yes Yes
XMODEM Protocol Support Yes
Compatible with Non-Unix Systems Yes

Command Language

Conditional Instructions Yes
User Variables Yes
Labels Yes
Fast Interpreted Object Code Yes
Program Run Yes
Subroutines Yes
Arithmetic and String Instructions Yes
Debugger Yes

Miscellaneous

Electronic Mail Yes Yes
Unattended Scheduling Yes Yes
Expandable Interface Yes
CP/M, MS/DOS Versions Available Yes

MLINK
The choice is easy. Our MLINK Data Communications System is the most powerful and
flexible telecommunications software you can buy for your Unix™system. And it’s easy
to use. MLINK comes complete with all of the features listed above, a clear and com¬
prehensive 275-page manual, and 21 applications scripts which show you how our
unique script language satisfies the most demanding requirements.

Unix System V BSD 4.2 MS-DOS
Unix System III Xenix CP/M
Unix Version 7 VM/CMS and more.

Choose the best. Choose MLINK.

Altos Data General IBM
Arrete DEC Onyx

AT&T Kaypro Plexus
Compaq Honeywell and more.

MLINK is ideal for VARs and application builders. Please call or write for information.

Corporate Microsystems, Inc. P.O. Box 277, Etna. NH 03750 (603) 448-5193

MLINK is a lr.nlrm.irk of Corporate Mirrosyslems. Im. Unix is a tiadrmark ol ATM Bell lahoiatorie

trademarks of Microsoft Corp. C P/M is a registered trademark of Digital Research.

. IBM is a legistered trademark of IBM Corp. MS-DOS and

Circle No. 57 on Inquiry Card

FROM NOWON, CONSIDER IT SUPPORTED

When it comes to Unix® systems,
“standard” isn’t always good enough.

Experts agree that the most powerful and most tech¬
nically advanced Unix system is the Berkeley version.
That’s why 4.2BSD from Berkeley is the operating system
of choice for software development, networking, engi¬
neering, CAD/CAM and demanding scientific applica¬
tions. Other Unix systems don’t have the features
advanced users require.

But 4BSD was developed at a university, so it has never
had real-world support. User assistance, bug fixes,
updates and enhancements have not been provided.

Now that’s changed.
MT XlNU, the4BSD specialist, supplies:

■ Fully supported 4.2BSD-based binary licenses
(MORE/bsd) for VAX® computers.

■ 4.2BSD source support and source updates for current
4.2BSD source licensees.

“We know UNIX® Backwards and Forwards”

UNIX” SUPPORT FROM BERKELEY
. Circle No. 7 on Inquiry Card

739 Allston Way, Berkeley, CA 94710 ■ 415/644-0146 ■ ucbvax!mtxinu!mtxinu
MORE/bsd and MT XlNU are trademarks of Mt Xinu Inc., DEC and VAX are trademarks of Digital Equipment Corp., UNIX is a trademark of Bell Laboratories.

■ Enhanced 4.2BSD-based source software for new
sites, with or without redistribution rights.

■ Full support for a wide variety of DEC® and non-DEC
peripherals.

■ Assistance for OEM’s and hardware manufacturers
developing 4.2BSD-based products.

MT XlNU personnel have been involved with 4BSD
development from the beginning. Now we are producing
4BSD performance enhancements, advanced network¬
ing, other Unix system extensions, and support for new
peripherals and architectures. As a service, we distribute
4BSD bug reports and proposed bug fixes to the com¬
munity. Our years of experience can speed and improve
your4BSD implementations.

4.2BSD. It’s always been better than just
“standard.” Now, with MT XlNU, consider
it supported.

verdix
DEVELOPMENT SYSTEM

Why the DoD mandated
Ada. When the Department of
Defense mandated Ada for
embedded and mission-critical
systems development, there was
good reason. This reusable, high-
order language can put an end
to the Software Crisis. Ada de¬
creases skyrocketing software
costs, improves management and
control, reduces life cycle costs,
boosts productivity, dramatically
reduces errors and cuts training
costs. Ada is the language of the
day, and Verdix speaks it. Louder
and clearer than anyone.

Why others are mandating
Verdix. We have the first highly
portable production-quality Ada
development system. The Verdix
Ada Development System
(VADS™) is the first production-
quality Ada compiler system to
meet DoD’s stringent require¬
ments for Ada language mission-
critical systems development. It is
now available on the DEC VAX™
series computer systems and

includes:

• High performance, rehost-
able/retargetable Ada com¬
piler under UNIX™ 4.2
BSD and ULTRIX™ (soon
under VMS) with excellent

diagnostics;
• Symbolic Debugger;
• Library Management

Utilities;
• Run Time System.

Designed for large scale and
embedded systems development,
VADS speeds programming
faster than any other Ada
compiler.

VADS also helps programmers
quickly learn the Ada language.
The unexcelled diagnostics speed
correction time and shorten
development time. The Symbolic
Debugger lets you watch your
program execute, Ada line by
Ada line or machine instruction
by machine instruction, even for
remote embedded systems. And
it’s highly portable: VADS will
be available on a wide range of
computer systems.

Fully DoD validated; avail¬

able now. VADS is validated and
ready to be put to work. It’s not a
promise. It’s available now (as in
“here and now”) and already in
use by major DoD contractors.

To find out for yourself how
the Verdix Ada Development
System can work for you, write, or
call (703) 448-1980 and talk to
Howard Nevin, Vice President
of Product Planning and Cor¬
porate Development for more
information.

IT'S VALIDATED. USE PROVEN. AVAILABLE NOWI

VERDIX’ Ada Development System ^
Verdix Corporation
14130 Sullyfield Circle

Chantilly, Virginia 22021
Tel: (703) 378-7600

© 1985, Verdix Corporation. Ada is a registered trademark of the US Government (Ada Joint Program Office). UNIX is a trademark of Bell Laboratories.
Verdix and VADS are trademarks of Verdix Corporation. ULTRIX is a trademark of Digital Equipment Corporation.

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Circle No. 4 on Inquiry Card

ATTERNS
IN DATA

MANAGEMENT
The intricacies of database systems

by Eric Allman

ne of the earliest applications of
computer equipment was for storing, organizing,
and retrieving information. By its very nature, the
computer is adept at accurately performing tedious
jobs. A task such as a search through documents for
a particular piece of information is the very sort of
thing that humans do poorly. Unlike the computer,
the human mind drifts; digits can be transposed and
sheets of paper tend to get missorted.

Early on, IBM proved particularly astute in
exploiting the power of the computer for database
activities. Up to that time, database management
was often machine-assisted (using equipment such
as card sorters and collators), but processors
themselves tended to be limited to scientific tasks
requiring substantial mathematical computation.
Then came the IBM 1401, which differed radically
from previous computers: I/O was emphasized, even
more so than computational ability; most instruc¬
tions operated on sequences of bytes rather than on
words; and operations were included in the hard¬
ware to perform such functions as comma insertion
and leading blank suppression.

Database technology has grown in three direc¬
tions since those days. First, the underlying hard¬
ware has become faster, smaller, and cheaper. In
some cases this has been used to provide dramatic
“brute force” systems such as ‘‘processor per
track” technologies that scan all the data read in
from disk. Second, the techniques for organizing
data have become more sophisticated. In particular,
the assumption of a linear media such as cards or
tape is now the exception rather than the rule.

24 UNIX REVIEW AUGUST 1985

msm m mm

8?

iiHyK&gi^

WltlSSi
SMUifi

;; ...

'XJ-SiLC:

wmmm

.

'mm

&?«§

@H8®8

DATABASE OVERVIEW

New generations of tools are

eliminating the need to consult a

programmer in order to access data.

Third, new generations of tools are eliminating the
need to consult a programmer in order to access
data.

Today, the database market tends to be divided
into three camps. The “big guns” camp usually
requires huge machines, facilities for storing data¬
bases measured in gigabytes, and large staffs of
programmers. This camp includes credit card
companies, the IRS, and airline reservation sys¬
tems. Their databases are typically very traditional,
leaning toward numbers and fixed-size character
fields. They can often be accessed by tens of
thousands of people at once. Unsurprisingly, invest¬
ments in such systems can easily run into tens of
millions of dollars.

At the opposite extreme are the many small
database systems currently popular on micros and
minis. These databases are small, measured in
kilobytes, and usually can fit on a single diskette.
Programming is often done using a “fill in the
blanks” style of interface that can be used with
minimal training. In many cases, non-traditional
data types such as text and graphics can be
accommodated. However, small systems are usually
single-user, slow, and limited to small databases.
The investment seldom exceeds a few thousand
dollars.

Between these two extremes, a new class of
supermini-scale systems has arisen. They have
many of the features of large systems, such as
multiuser access, good performance, and ample
programming language access. Many also include
some of the nicer features of the small systems,
such as applications generators and non-traditional
data types. Such databases are typically in the 1 to
100 MB range and cost $10,000 to $100,000.

DATA MODELS

Database management systems typically have a
preferred way of organizing data. This is called the
data model. For example, a file cabinet lends itself
naturally to a particular way of organizing data.
There are many data models, but three are both
popular enough and different enough to be interest¬
ing: the hierarchical model, the network model, and

the relational model.
The hierarchical model most closely approxi¬

mates a tree. For example, the UNIX file system is a
flexible form of hierarchy: every node in the file
system has a unique parent and may have some
number of children. (It departs from a strict
hierarchical model, though, when links are consid¬
ered since files can be created that exist in more
than one directory.)

Hierarchies have obvious physical correspon¬
dences, making the transition from manual to
automatic systems convenient (for example, a file
cabinet is a hierarchy—a cabinet contains drawers,
a drawer contains files, a file contains pages, and so
on: moreover, a file can be in at most one drawer, a
page in at most one file, and so forth). In the early
days of computing, hierarchies were convenient
since they could be represented easily on linear
mediums such as punched cards and magnetic
tapes.

However, hierarchies are rife with problems.
Finding information that has been classified under
a different heading than you have can require an ex¬
pensive sequential scan of the entire database.
Since a piece of information can only exist in one
place, data must be duplicated if it logically appears
in more than one location. This complicates
updates: when a datum is updated, all copies must
be found and updated.

The network model represents an attempt to fix
the data duplication problem inherent in the
hierarchical model by allowing arbitrary pointers.
This has the extremely desirable property of
allowing data to appear under more than one
heading. For example, the description of the parts
making up an assembly could reasonably appear in
three places: in the file for the assembly, once in
each of the files for the parts themselves, and once
in each of the files for the manufacturers supplying
the parts.

The network model—like the hierarchical mod¬
el—has update problems. When a datum is deleted,
all pointers to it must be found and deleted. UNIX
solves this problem by deleting references rather
than the data itself: only when the last reference is
deleted is the data actually deleted. In database
terms, this is called an “update anomaly”, since the
delete action functions differently depending on the
state of the database. Update anomalies can
occasionally be useful, as in this example, but they
normally are harmful and should be avoided.

Functioning network database systems such as
CODASYL include reference counts and back
pointers so that deletion of a datum can also delete
all references to that datum. The cost of this is

26 UNIX REVIEW AUGUST 1985

Order the UNIFY
Demo Kit, and learn
why UNIFY is the
DBMS chosen by more applica¬
tions developers and UNIX-based
computer vendors.

You can interactively demo
UNIFY’s speed advantages, made
possible by its automatic selection
of four access methods.

You can see the simplicity of
UNIFY’s menu-based design and

MTU**

details UNIFY’s
easy forms design,

multiple security fea¬
tures and unmatched
host language inter¬
face—and proves

why this is the one DBMS that can
keep pace with your needs.

Test it yourself. The Demo Kit
includes disk or tape, demo hand¬
book, plus comprehensive manuals
that show how to build virtually
any application—all for $150.

MF "

ace, Lake
503/635-6265

Call Integrated Solutions.

high-performance, VME based
workstation that's easy to
to the MC68020.

Upgrades to the new Motorola
68020 are as easy as a single
board swap in the Optimum V
Series. And when you're
ready to add on even more
processing power, you have
a wide range of sophisticated
Integrated Solutions' products
to choose from. Peripherals.
Packaging alternatives.
Performance features.
Applications. All at low
incremental cost.

high-speed memory and
UNIX 4.2 BSD, the Optimum V
is designed to provide you,
the technical professional,
with state-of-the-art
technical processing.

And Integrated Solutions
makes processing even easier
with a unique user interface.
Multiple windows, icons and
pop-up menus mean con¬
venient access to programs,
files and directories.

High-performance
graphics for the
technical
professional.
The Optimum V offers
impressive features. Like a
high-resolution (1280 xl024),
bit-mapped graphics display
in monochrome or color.
32-bit VME architecture and
AMD 29116 graphics display
processor. Together with
11.2 MHz 68010, dual ported

Support and more.

Integrated Solutions is behind
you all the way with on-site
hardware maintenance and
local software support. Call us
now for more information.

Integrated Solutions
An NBI Company

2240 Lundy Avenue

San Jose, CA 95131
800-538-8157, ext. 823

In California, 800-672-3470,

ext. 823

Circle No. 2 on Inquiry Card

DATABASE OVERVIEW

Database management systems

typically have a preferred way of

organizing data.

potentially enormous. In general, network database
systems are so gargantuan that they either require
huge processors or require that the user handle
“strange cases”.

Hierarchies and networks share one particularly
annoying property: the physical representation of
data (that is, what I can get to quickly from where I
am now) is intertwined with the data’s logical
organization. For small applications or applications
that are well understood in advance, this is not a
problem, but if the organization of the data (the
schema in database parlance) changes, all pro¬
grams accessing that data may need to be rewritten.
The property we are looking for is called data
structure independence. For example, UNIX rou¬
tines like getpwnam permit relatively trivial inser¬
tion of hashed password files since they hide the
physical structure of the data, whereas a change in
the directory format requires changes to many
programs that know the physical format of
directories.

A relatively recent development is the relational
model. It was originally considered little more than a
mathematical curiosity, since it was “obviously” too
inefficient to actually implement—much as tree-
structured file systems, device independence, and
dynamic processes were “obviously” too inefficient.
As a result of this genesis, a large amount of the lan¬
guage surrounding the relational model is math¬
ematical rather than intuitive.

In the relational model, data is structured as
tables. These tables are physically disjoint from
each other, although they may be logically related.
For example, a database describing the parts
making up an assembly might have one relation
(“table") containing the list of parts making up each
assembly, another relation containing the list of
suppliers that supply each part, and so on. Connec¬
tions are made using logical links: to find the list of
suppliers that make parts for a given assembly, find
the set of parts that will be required, then find the
list of suppliers making those parts.

There are several important points to this
example. First, the data language used to access the
database is normally non-procedural (that is, it

30 UNIX REVIEW AUGUST 198S

describes what data is wanted rather than how it is
obtained), and set-oriented rather than datum-
oriented. Second, the relational model depends on
the existence of efficient search structures. Third,
key data is duplicated; the part number is listed
both in the “assembly” relation and the "supplied-
by" relation. Fourth, the data structures can be
changed transparently, since the users never say

follow that pointer” in their programs.
1 he relational model of data has become popular

because of its flexibility and simplicity. Almost all
the database products available on UNIX today are
relational systems: to reflect this, the remainder of
this article will focus on this type of system.

First, though, there are several terms that bear
description:

A relation is a collection of semantically related
data. For example, the /etc/passwd file is an
example of a relation matching a login name (the
unique key) to information about a user. Relations
are sometimes called tables by analogy to the
convenient printed representation of a relation.

A single entry in a relation is called a tuple, short
for "n-tuple”, taken from mathematical usage. It is
sometimes called a record (from the obvious data
processing analogy) or a row (from the “table"
analogy).

Each of the individual pieces of data in a tuple is
called an attribute, another word borrowed from
the mathematical model. In database-land there is
nothing smaller than an attribute, since if you could
subdivide an attribute, you would be creating a
hierarchy. Attributes are sometimes called fields-,
the table analogy would call them columns. For
example, the/etc/passwd “relation” has seven
attributes: user name, password, user id. group
id. geos, home directory, and shell.

BASIC OPERATIONS

All database systems provide a few basic opera¬
tions. Without these, the system would be unusable.
However, different systems express the operations
in different ways. In some cases these operations
may be so hidden by the user interface that they are
not obvious at all.

Of course, the most obvious operation is to
retrieve data (this is also called select, get, or query
in some systems). Conditions can normally be
applied to limit the amount of data that is returned.
For example, a retrieval might ask the system to
“show the employees who work in department 23”
or "retrieve all employees who earn more than their
manager”.

Data can be added to a relation using the append
(also called insert or add) operation. For example,

Learn this integrated office program on one
system, and you’ll already know three more.

Ml M

pifei.

V ;;P% .

R Office ties a powerful
word processor together
with the file management,
table spreadsheet, report genera¬
tion and desktop management chores
common to nearly every modern office.

Incredibly, the UNIX version is identical
to the DOS version. And the RM/COS. And the
XENIX.

Now you can switch from a stand-alone PC to
multi-user computer systems without missing a beat. You
take all the functions, all the commands, all your learning
with you.

Yates Laboratories gave R Office highest scores in its
recent Competitive Edge report, praising its "straightforward
and efficient user interface which products ^
designed by committee typically lack." Kx ■

It's the only office automation program

many companies need
to own. (And the only one

their suppliers need to
support.)

We designed R Office to
make the most out of very little mem¬

ory, too. After the first 320K bytes of RAM
for installation, each additional terminal

requires only 32K. (Compare that with other,
so-called multi-user software.)

R Office is already helping small companies and
major corporations improve their office productivity. And

unlike hopeful imitators, R Office is available, today, to help
yours.

Write for information to R Systems, Inc., 11450 Pagemill
™ Road, Dallas, Texas. Or phone toll-free,

I"W**d(800) 527-7610. In Texas, call collect, (214)
343-9188.

jdigruiurwdru vvme iui miui

R Office
BY R SYSTEMS/ I NC.

UNIX AND COS ARE TRADEMARKS OF AT&T LABS AND RYAN-McFARLAND CORR. RESPECTIVELY. XENIX IS A REGISTERED TRADEMARK OF MICROSOFT, INC.

Circle No. 11 on Inquiry Card

DATABASE OVERVIEW

The relational model of data has

become popular because of its

flexibility and simplicity.

“add Eric Allman with an initial salary of
$200,000”.

The delete operation can be used to remove
existing data. For example, “fire everyone with
salaries over $20,000”.

Data can be changed using the replace operation
(also known as modify or update). A good example
might be ‘‘give all programmers a 40 percent raise”.
The replace operation can be simulated using a
delete followed by an append, but most systems
supply this function as a primitive operation.

In addition, some database systems support more
complex operations, although normally they are not
given keywords in the language.

The projection operation is used to select certain
fields from the records. For example, “give me
names and salaries (but discard the rest of the
information)”.

Restriction limits the number of tuples to be
retrieved. For example, “just give me the informa¬
tion about the people working in software”.

Join matches information from one relation
against another relation. For example, “match
employee information against department informa¬
tion” (this is normally used in conjunction with
restriction, so that a real query might be something
like: “give me employees who work in departments
with sales over $1 million”).

Aggregation is used to summarize data. For
example, “give me a count of employees in soft¬
ware” (as opposed to a list of those employees) or
“what is the average salary in my company?”

INTERFACES

Many kinds of user interfaces to database
management systems exist. Most sophisticated
database systems have many different user inter¬
face modules, varying from very powerful modules
that require a great deal of user sophistication to
modules that can be used with a minimum of
training but have correspondingly less power. For
example, a system may offer a programmer inter¬
face, an end user query facility, and an applications
generator.

Ad Hoc Query Language. An ad hoc query

language allows a user to enter queries in a database
language such as SQL or IDL. These languages
require a fair amount of training to use. Popular
languages today are non-procedural, which is to say
they describe the data to be accessed without
describing how to find it. For example, to find the
names and salaries of all employees of the toy
department, one might enter in IDL:

range of e is employee

range of d is department

retrieve (e.ename. e.salary)

where e.dno = d.dno

and d.dname = "toy":

Embedded Programming Language. In order to
build up more powerful programs, it is often popular
to embed the database sublanguage into a general
programming language. For example:

showsalaries()
/
1

S char name[50]:

$ int salary?

$ range of e is employee:

$ retrieve ($name = e.name, $salary = e.salary)

$ {
printf("name=%s, salary=%d\n". name, salary):

* }
i
l

These interfaces require even more training than ad
hoc query languages.

Query by Example. This popular interface asks
the user to fill out an example of what the desired
output should look like. For example, if the user
draws a box on the screen with columns headed
“ename” and “salary” and puts “Eric Allman” in
the first column and a question mark in the second
column, QBE will assume that this means “give me
Eric Allman’s salary”. Fairly minimal training is
required, but complex queries are almost impossible
to express.

Browsers. Browsers display a single record at a
time. A user can then update the values on the
screen and ask the database system to change the
tuple accordingly. Browsers are extremely useful for
a number of common applications.

Some browsers require that a semi-sophisticated
user set up the screen format in advance, after
which naive users can access the data. More clever
browsers will set up screens themselves, so that
they can be used immediately by naive users.

Application Generators. Many applications

32 UNIX REVIEW AUGUST 1985

have a number of common features that cannot be
adequately handled by a browser. In these in¬
stances, an application generator provides a frame¬
work in which programs can be written. They vary
from extremely simple packages to forms-based
programming environments. In most cases, a
medium-sophisticated user can use an applications
generator. The applications that result can general¬
ly be used by very naive users.

Report Writers. Businesses lust for reports, so
naturally a separate class of interfaces is entirely
devoted to producing nicely formatted reports—
including columns of figures, page headers and
footers, subtotals, duplicate value suppression, and
whatever else the latest rage might be on Wall
Street. Most report writers provide default formats
that naive users can use to produce reasonably
pleasing reports, with lots of hooks to provide fine
control over format elements that are intelligible
only to the initiated.

Special Purpose Interfaces. The world is filled
with special-purpose interfaces. These can vary
from extremely simple ones (such as Automatic
Teller Machines, usable by a wholly untrained
public) to extremely complex ones (like the control
program for a “factory of the future”).

FEATURES AND TRADEOFFS

A wide variety of features are available in
database systems currently on the market. These
features can be very important if you need them, but
in virtually every case they come with an associated
cost.

Handling Large Databases. The grep program
is fine for small databases (less than a few thousand
“records”) that have moderate performance re¬
quirements. For larger databases or databases
requiring fast access, more powerful access meth¬
ods will be required. For example, the look program
uses a binary search algorithm on the dictionary
and the dbm routines use hashed indices.

Arithmetic Capability. The need to do simple
arithmetic inside the database management system
is common. For example, you might need to
computer “age = 1985 - birthyear” or “metres =
feet * 0.3048”. The awk program exemplifies this
capability.

Aggregation. Many applications need a sum¬
mary of data rather than a slew of raw values. For
example, the wc program produces a summary of its
input data. Aggregates can be simple, such as
average salary or maximum age, or they can return
a set of values, such as total population by country
(returning one value for each country in the
database).

The awk program includes the ability to compute
these aggregates using a procedural interface. High-
level languages provide these as primitives, such as
“avg(emp.salary)” to find the average employee
salary.

Data Structure Independence. Contrary to
popular belief, computer professionals are not
omniscient. They often fail to properly anticipate
actual reference patterns. Data structure indepen¬
dence affords the ability to change the “fast access
paths” without changing existing programs. For
example, if /etc/passwd were hashed on login
name, but it later became clear that it would be bet¬
ter to produce a B-tree on user id instead, it would be
nice if the change could be made without all the old
programs being affected in the process. This feature
is common on relational systems, but rare on other
types of systems.

Multi-File Capability. It is often necessary to
correlate data between files. This requires a more
complex query language capable of expressing the
appropriate queries. Processing, of course, gets
somewhat more complicated along the way. The
join command in UNIX is an example of such a
program.

Concurrent Access. In commercial settings, it is
common for many people to access the same
database at the same time. Some control must be
provided to make sure these people do not destroy
each others’ work. This is usually provided with
some sort of locking mechanism. With locking,
though, comes the potential for deadlocks, so part of
the cost of this feature includes deadlock detection
and resolution algorithms.

Crash Resilience. If your data is very valuable, it
is important that it be left in a consistent state in the
event of a system crash. The usual definition of
“consistent” is that “the update I was executing
either should be completed or backed out altogeth¬
er”. To provide this, the database system must have
a notion of the commit operation—that is, it must
be able to atomically specify that an update is to be
finished rather than backed out. Since all the
appropriate data must be on disk, this implies a
sync operation as well. Finally, all changes must be
logged for the duration of the query so that they can
be backed out if necessary.

Transactions (or Atomic Multiple Commands).
Often an operation that should be considered
atomic must actually be implemented using several
smaller operations. For example, to transfer money
from one account to another, each account must be
updated. In the middle of the transfer, there is a brief
moment when the money either disappears entirely

Continued to Page 96

UNIX REVIEW AUGUST 1985 33

aKJNg

DBMS on the UNIX trail

by Roger J. Sippl

On its way to becoming a
standard commercial operating
system, UNIX has sometimes
been criticized for not being par¬
ticularly “commercial”. Some
say that since UNIX was devel¬
oped in a research lab, perhaps it
was meant to stay there. To these
people, it seems clear that UNIX
was never designed to be run on
computers used for keeping re¬
cords, ledgers, and other “large
DP type” information. For them,
programming productivity and
engineering document prepara¬
tion seem more in keeping with
the system’s flavor. But are they?
In the years since UNIX moved
into spheres outside of the re¬
search lab, what has it shown
itself to be truly good at?

It’s an interesting question
with many sides to consider. For
the moment, let’s focus on the
ways in which UNIX has become
commercial. Certainly the ability
to support data processing appli¬
cations and to make large corpo¬
rate information resources avail¬
able to a large body of users are
important criteria for commercial
success. The best way to see if
UNIX meets the test is to evaluate

whether database management
systems can be built to run—and
run well—on it. If so, one can be
assured that UNIX is legitimately
commercial, since all commercial
applications will ultimately be
built using DBMS tools.

In the early days of UNIX, there
was some question as to whether
it could meet this test. Shortcom¬
ings existed—some of which still
have not been completely solved.
The story to tell here, though, is of
how a non-commercial operating
system has been commercialized,
mostly through standards born of
necessity.

We are nearing the end of the
changes UNIX must undergo as
part of the process, so this is a
good time to recap some of the
issues that have been addressed
over the last five years. At times it
will be necessary to discuss spe¬
cific implementation issues and
how they have been addressed.
Since my own company’s prod¬
ucts are best known to me, I will
occasionally mention how these
issues have affected the architec¬
ture of the Informix DBMS and
the C-ISAM indexed file system
subroutine library. By no means,

34 UNIX REVIEW AUGUST 1985 Illustration by Mark Macleod

MAKING A MATCH

though, should it be thought that
these are issues limited to these
products alone.

The major database issues that
have been addressed during the
commercialization of UNIX have
included:

1) Record locking. This is prob¬
ably the best known.

2) Languages. In the corporate
and government data process¬
ing world, COBOL and DBMS
go hand in hand. The original
definition of DBMS taken from
the mainframe environments
of the 1960s and ‘70s was, in
fact, one comprised of subrou¬
tine interfaces to COBOL. Nev¬
ertheless, UNIX has a heavy C
bias that often shows.

3) The file system. The UNIX
operating system actually used
to limit the size of a file to 1 MB
so that users wouldn’t get car¬
ried away. To get database
packages to run, some system
administrators actually had to
turn off this protection against
“runaway” programs. Early
UNIX implementations also
sometimes imposed “indirec¬
tion” overhead whenever they
encountered big files.

4) Multiprocessing architecture
and shared memory. DBMS
code is usually pretty big, and
it likes to buffer lots of disk
data. Can UNIX handle the
challenge?

RECORD LOCKING

One of the strengths of UNIX is
that it offers multiuser capabili¬
ties. Thus, it is imperative that
any database system designed
to run under UNIX be able to
operate properly in a multiuser
environment.

What does it mean to “operate
properly”? The answer is not
obvious. It turns out that a funda¬
mental problem arises when sev¬
eral users change the same body

Each new machine can

often pose an

adventure in record

locking.

of information at the same time.
Fortunately, there are ways to
solve this, but note that I say
“ways” rather than “way” be¬
cause not all versions of UNIX
agree on the same solution. To
illustrate the problem and a typi¬
cal solution, let’s look at an
example.

Consider a database system
with a screen-oriented data entry
and inquiry module (most com¬
mercial UNIX database products
contain such a package). In our
example, the user has designed a
database file to contain records
that list a customer name and a
corresponding receivable, like so:

Customer Name Amount Owed

John Smith 20.00
Paul Stevens 230.00
Jane Doe 750.00
Mary Q. Public 570.00

Now consider a data entry and
maintenance screen that allows a
clerk to find a record, update it,
and write it back to the database.
The actual sequence of operation
follows:

1) The user presses the “Q” key,
which represents the screen
package’s “query” command.
The user is presented with a
screen that allows part or all of
the customer’s name to be
entered into a customer name
field. With this information,
the screen package software
can then search the database

for that customer’s record and
return it to the screen.

2) The clerk then strikes the “U”
key (for “update”) and has the
option of changing any infor¬
mation on the screen.

3) By striking the ESC key, the
operator can tell the screen
package to write the updated
record to the database stored
on disk.

Let’s look a bit closer at what is
actually going on inside the com¬
puter system over the course of
these three steps. Assume the
record of Paul Stevens is the one
to be changed. Prior to step 1, it
resides on disk, having no reason
to be read into main memory.

When the search is performed
as part of the query in step 1,
though, Mr. Stevens’ record is
found and read into main mem¬
ory. At this point, one copy of the
record exists in main memory,
while another remains on disk.

In step 2, the clerk changes the
record on the screen. This modi¬
fies only the copy of the record
contained in main memory. Only
after step 3 is executed can the
main memory copy of the record
be written back to disk. Thus,
only after the operation is com¬
plete will the main memory copy
and the disk copy agree. (In most
UNIX systems, a “buffer flush¬
ing” issue must also be consid¬
ered as part of this scenario, but
let’s neglect this subtlety for the
time being since it does not affect
our fundamental concern.)

Note that no problem arises
from the fact that the main
memory and disk copies differ for
a short period of time. Even if the
clerk should go on a coffee break
without first telling the screen
package that an update was com¬
plete, two copies of the same
record could differ for a fairly
lengthy period without trouble
arising.

36 UNIX REVIEW AUGUST 1985

But what if we now introduce a
second clerk? Let’s say both clerk
A and clerk B are updating the
same record concurrently. Kindly

note that “concurrent” does not
mean “simultaneous”. A com¬
puter’s CPU can only do one thing

at a time. To say that two events
are taking place concurrently
means that the second event
begins before the first event fin¬
ishes. Since UNIX offers time-
slice multiuser and multitasking
functionality, it can run programs
concurrently. The switching be¬
tween processes is fast enough to
be transparent, making it appear
as though processes occur simul¬
taneously. If this weren’t the case,
UNIX would have gained precious
little acceptance as a multiuser

system.
Returning to our two clerks,

let’s say clerk A reads the Paul
Stevens record from disk into

main memory and changes the
$230.00 to $1000.00 since a
new invoice has been sent for
$770.00. However, before clerk A

gets the opportunity to write the
record to disk by striking the ESC
key, clerk B reads another copy of
the Paul Stevens record into main
memory. This leaves us with

three copies of the record: one on
disk, one in clerk A’s main mem¬
ory “data area”, and a third in

clerk B’s data area.
At this point, clerk B changes

the balance from $230.00 to
$235.00 to reflect a new $5.00

bill for Paul Stevens.
Unknown to the clerks, they

have become participants in a

race. If clerk A writes the Paul
Stevens record to disk first, clerk

will overwrite the $1000.00 one

already stored on disk. If, on the
other hand, clerk B writes the
record first, clerk A’s $1000.00
balance will be the amount stored
on disk. The true balance, of
course, should be $1005.00.

The fundamental problem this

Almost every

manufacturer with a

locking problem is

actively working on it.

scenario illustrates is known as
“concurrency control”. There are

several places in a multiuser
operating system where concur¬
rency control can become a prob¬
lem. Besides the problem with
concurrent updates, several us¬
ers might choose to send jobs to
the same printer concurrently.

Most multiuser operating sys¬
tems provide solutions for this

fundamental problem by using

“locks”.
Locks do not apply when some¬

thing is merely read into main
memory. But once an update is
initiated, screen package soft¬

ware should lock the record.
Locking a record usually doesn’t
mean that other users can’t read
it, but it does mean that other

users can’t lock the same record.
Once an update is complete,
though, the record will be written
back to disk, and the screen
software will unlock the record so
that other users can modify it.

To see this in practice, let’s
take one more look at the two-
user scenario, using the assump¬
tion that the system offers the

ability to lock files. Clerk A reads
the record and begins to update it.

The Paul Stevens record thus is

update it. Since the record is
already locked, the screen soft¬
ware acknowledges this by print¬
ing a message on the clerk’s

terminal explaining that the rec¬
ord is temporarily unavailable,
and that it would be best to try the

update again shortly.
Notice that the means for affix¬

ing a lock, detecting a lock, and

removing a lock really must re¬

side in the operating system it¬

self, as personified by subroutine
calls to the various programming
languages running on the system.
The lockingjob falls to the operat¬
ing system because all the pro¬
grams running on the computer

need to coordinate their activities
through “lock tables”. It would be
unreasonable, probably impossi¬

ble, for all the programs running
on a computer at the same time to

make inquiries of all other pro¬
grams on the system before lock¬

ing a record.
This may make it seem obvious

now that record locking is a job

for the operating system, but it
took a long, hard battle to get
such facilities included in com¬
mercial versions of the UNIX
operating system. Not until Sys¬
tem V Release 2 was it that an
official description of a locking

call was included.
Nevertheless, some database

management systems available
on UNIX have been providing
multiuser database functions for

five years. How have they done
this without a locking call? The
truth is: they haven’t. The void
left by official releases of UNIX

actually has been filled by a
number of vying alternatives.
The locking calls for the Fortune,
Onyx, and Plexus machines are
all the same. But the locking call
for Xenix differs from these, and
the Zilog locking call offers yet
another variation. All work fine;

they are just different. Since In-

■ in n in
80 different machines, though,
we have found that each new
machine can often pose an ad¬
venture in record locking. The
System V Release 2 standard is

helping in this regard, however.

The source code we use to
do locking has ifdejs for code

UNIX REVIEW AUGUST 1985 37

concentrjcT)
ASSOCIATES, INC

WE DON’T
PRODUCE TRAINING.
We Produce Shell Programmers, C Programmers, Ada Program¬
mers, System Administrators, Kernel Hackers, Doc Preppies,

and Project Managers.
•We will work with you to find out what your people need to know.

• At no charge, we will propose a curriculum tailored so that your people
are immediately productive.

• Our instructors will deliver the courses or you can license the courses
and well teach your teachers.

Circle No. 12 on Inquiry Card

WE ARE ALSO COMMITTED TO BRING TO
MARKET A LINE OF SOFTWARE TOLLS
TARGETED AT PROGRAMMER PRODUCTMIY.
The first of these products is:

shacc-the shell accelerator-is a compiler for the Bourne shell. It translates Bourne shell pro¬
grams into C and then invokes the C compiler to produce an "a.out" file. The C code that
is generated is well-structured and very readable, so it can be further optimized by hand if
you like.

shacc allows you to write production code in'the Bourne shell: Do the fast prototyping in shell
and then shacc it and ship it.

Call us for information about our on-line demonstration.

shacc /
By Paul Ruel
Concentric Associates

SHAGC UP WITH-.
CONCENTRJC)

ASSOCIATES, INC

For further information on our Educational Services or shacc, call or write:
Linda Cranston/Concentric Associates, Inc/One Harmon Plaza/Secaucus, NJ 07094
201-866-2880

Circle No. 13 on Inquiry Card

to handle dozens of different
locking calls and “non-operating
system” locking call schemes.
Schemes that exist outside the
operating system use some more
esoteric tricks to work around the
UNIX kernels that lack locking
calls. These schemes are not
needed as much anymore, but
they have been used in the past,
and some of the better work¬
arounds are still in use.

For example, UNIX 4.1 and
4.2BSD versions do not have
record locking calls per se, but
4.2 does allow programmers to
lock a file. A clever programmer
can develop lock table manage¬
ment code to secure records or
anything that needs to be locked
quickly. When System V came out
prior to Release 2, it did not have
a locking call, but it did provide
for semaphore calls. This has
allowed clever programmers to
lock the lock tables. However,
with both the 4.2 Jlock call and
System V semaphores, the lock
tables have had to be kept in a
“public place”, such as a disk,
and performance of updating has
been affected (although not badly
because of the least-recently-
used disk buffering scheme uti¬
lized by UNIX).

For all the improvements,
some of the machines currently
on the market still lack a locking
call. Those that use early versions
of UNIX typically have no locking
facilities whatsoever unless the
manufacturer has added them
independently. It should be said,
though, that almost every manu¬
facturer with a locking problem is
actively working on it. Most
DBMS software in the UNIX mar¬
ket thus is safe, though some
packages still do not provide rec¬
ord-level locking. Those that lack
record locking must change be¬
cause even though it is easier to
lock an entire file, users cannot
obtain as much freedom and
“concurrent throughput” that

way.

LANGUAGES

First, there was C under UNIX.
But for business users, COBOL
has always ranked number one.

Happily, COBOL has been suc¬
cessfully ported to UNIX by sev¬
eral third-party software com¬
panies. Better yet, the interactive
debuggers and “workbench” type
environments available for CO-

Easier
than
1-2-3...

BUT DESIGNED
FOR LARGER
SYSTEMS

It’s simple, C-CALC from DSD Corporation is

more flexible, has more functions, and is easier
to use than the best selling spreadsheet. We
made it that way for a very simple reason, you’ll
get more work done and make better decisions
in less time. That’s what makes you successful
whether you are planning for the future, fore¬
casting trends, or analyzing profits.

The most popular spreadsheets require a great
deal of time to get up and running. When we
created C-CALC we kept in mind that time is
your most important resource. Our On-Line
Help facilities, prompts and menus allow even
someone with minimal experience to see
meaningful results in very little time. Our built-
in training procedures let you pace your own
learning with tutorial topics that range from
basic to advanced. As you become more expe¬
rienced, C-CALC allows you to bypass
prompts and menus to save even more time.

P.0. BOX 2669
KIRKLAND, WA 98033-0712

■ EFFECTIVE SOFTWARE FOR BUSINESS

So call DSD Corporation at (206) 822-2252.
C-CALC is currently available for: UNIX, VMS,
RSTS, RSX, IAS, P/OS, AOS, AOS/VS (Data
General), IBM CSOS.

C-CALC is a registered trademark of DSD Corporation. UNIX is a registered

trademark of Bell Labs. P/OS. RSTS and RSX are registered trademarks of

Digital Equipment Corporation. AOS and AOS/VS are registered trademarks

of Data General Corporation.

Circle No. 25 on Inquiry Card

UNIX REVIEW AUGUST 1985 39

:o:
MAKING A MATCH

BOL programmers under UNIX
are among the best offered
anywhere.

However, the interfaces be¬
tween COBOL and DBMS prod¬
ucts have not been quite so illus¬
trious. COBOL has a file type
ISAM (Indexed Sequential Access

Method) that allows programmers
to declare “search keys” on se¬
lected fields of a data file. The
ISAM file type facility allows pro¬

grammers to quickly search for

records by the contents of fields
rather than by record number.

This ISAM file type is typically

supplied by the operating system,
largely because it can thus be tied
in with record-locking mech¬
anisms. But since UNIX had
no record locking when it first
became commercially available,
it certainly didn’t offer ISAM.
Indeed, UNIX programmers could

not even read records by number,
which was considered a standard
capability by most other operat¬
ing systems at the time. Instead,
records had to be read by byte
position.

The same suppliers that pro¬
vided COBOL under UNIX solved

these problems by implementing
fixed-length records on top of the
byte-pointer style of interface of¬
fered by UNIX. Some COBOL
implementations used C-ISAM
since they were often written in
C.

This use of a standard ISAM for
UNIX has supplied an interface
between DBMS tools and COBOL
(as well as other languages using

the same ISAM). The COBOL
CALL verb has also been used
effectively as a subroutine style
interface (by both Informix and
Unify). These interfaces almost
always have worked better when
they have come from C rather
than COBOL, demonstrating the
UNIX prejudice. But this is now
changing in response to commer¬
cial demands.

The best technology for inter-

DBMS software often

looks like part of the

operating system. At

times, it actually is.

facing a language with a DBMS is

not by way of a subroutine at all,
but rather by using an “embed¬
ded query language” approach.
Until recently, this was used only

by Ingres (embedded Quel), but
now it is also available in the
Informix-SQL product line for C
and COBOL (embedded SQL).

The embedded approach al¬
lows programmers to interleave
statements of a query language
with statements written in a

high-level language, such as C or
COBOL. The term “query” lan¬
guage is a bit of a misnomer since
languages such as SQL or Quel
really have statements for insert,
delete, update, and structure¬
changing operations in addition

to sophisticated data retrieval
statements.

These embedded languages,
even when used on non-UNIX
machines, are usually compiled
by first translating the database
language into the syntax and
subroutine calls of the host lan¬

guage. This technique, known as
“running a pre-processor”, is old
hat in the UNIX community.

C has always had a pre-proces¬
sor, and many of the software
development tools and program
text editors on UNIX cope with
such compile-time architectures
well. Error messages that come

from the compiler of the underly¬
ing language contain error mes¬
sages referencing line numbers
from the original source listing—

if the product is set up to do this
and if it follows the rules of UNIX
pre-processors. In short, since

language processing is something

UNIX has always been good at,
these types of programming pro¬

ductivity tools fit well into the

UNIX environment. Considering
that pre-processors offer the best

interfaces to database systems, it
could be said that UNIX enjoys a

significant advantage over com¬

peting “commercial” operating
system environments.

THE FILE SYSTEM

UNIX was written to operate on
machines that had meager pro¬
cessing resources by today’s

standards. Accordingly, it could
not impose much overhead. It’s
hardly surprising then that the
designers produced a system built
around the assumption of small
files. This was reflected in design
tradeoffs that assessed a perfor¬
mance penalty whenever files
were large.

How did this penalty work? In
essence, by wreaking havoc with
the inodes of large files. The inode
for each file is a block of disk that
explains who created the file,
when it was last modified, what
the permissions are, where to find
the file on disk, and how big it is.
The information about size and
location needs to be fairly concise
to fit into a single disk block. If the
file is too big for an inode to
explain its location fully, the in¬
formation in the inode block can

act simply as a “pointer” to a
group of other blocks containing
the full story. This additional step
means, though, that the oper¬
ating system is spending more
time reading and writing large
files, because it first has to read
and study pointers and indirect
blocks.

The amount of overhead im¬
posed by this “indirection” has
been much debated. Some have
estimated that retrievals on sys¬
tems with “old” architectures
can be slowed by as much as
20 percent. Discussions of this

40 UNIX REVIEW AUGUST 1985

question typically have been
more theoretical than practical,

though. And the question is be¬
coming more academic still—for
a number of reasons.

First of all, the block size on
most UNIX machines is changing
from 512 bytes to IK, 2K, or even

4K bytes. The bigger the ma¬
chine, the bigger the block size—
and, in more cases than not, the
bigger the database files. Also,
the bigger the block size, the
bigger the file can be without
“overflowing” its inode. As block
sizes continue to grow, it becomes
less likely that overflow will occur

at all.

Also, the 4.2BSD implementa¬
tion contains a “fast” file system
that has been reorganized to
diminish or eliminate this prob¬
lem. Although 4.2BSD is not
widespread commercially, many

of its concepts for building a file
system capable of handling large
files have been picked up by
commercial implementors.

Another reason for diminish¬
ing concerns over inode overflow

is the falling price of main mem¬

ory. This may not seem relevant,
but because of the elegant buffer¬
ing scheme of UNIX, it is. Even
where indirection is necessary,

indirect blocks can easily be lo¬
cated in main memory to facili¬
tate frequent use. Users with big
database files who must work
with antiquated file system archi¬
tectures and small machines can
get around the overhead by in¬
creasing the number of operating
system file buffers whenever per¬
formance problems become no¬
ticeable. The default number of

buffers is usually very low—often

30 (each only 512 bytes long,
giving the system a total of 16K
bytes for file system buffering).
This could be enlarged to 50, 75,
or even 100 buffers, and still
be conservative. Increasing the
number helps ensure that the
indirect pages, if any, remain in

Throughout the

history of DBMS

products on UNIX, the

advent of standards

has always helped.

main memory.
Some DBMS vendors have de¬

veloped file systems able to “work
around” UNIX in order to address
the indirection problem. These
solutions usually require that the
database be placed on what is

called a “raw disk” logical or
physical device. The data is then
written by the DBMS software to
an “unmounted device”, obviat¬
ing the need for formatting it for
the UNIX file system.

The disadvantage to this ap¬
proach is that UNIX doesn’t know
how to cope with these “raw

disk” chunks, and thus many
UNIX utilities—such as Is, tar,
df, icheck, dcheck, fsck, and the

like—are of no use. Also, other
programs cannot share space on
the disk allocated to a DBMS file
system. This means that any
space set aside for future DBMS
growth translates by necessity
into wasted system space for the
present. Nevertheless, those us¬
ing the “work-around” approach
are best advised to reserve plenty
of space at the outset since major
problems are sure to arise if the
space should ever fill. In the event

the space does become saturated,
the entire device will have to be
unloaded to tape, reconfigured as
a larger device (using some of the

more esoteric UNIX utilities), and
then reloaded. This process also
usually means that some other
logical disk device will have to be
borrowed from to obtain the nec¬

essary space. This means other
data will have to be unloaded as

well. Databases that span disks
are more complicated yet, since
UNIX pathnames are not avail¬
able for non-UNIX file structures
and thus the process cannot be
made transparent.

MULTIPROCESSING
ARCHITECTURE AND
SHARED MEMORY

“Commercial” data processing
has traditionally allotted special
privileges to DBMS code. In fact,
DBMS software often looks like
part of the operating system. At
times, it actually is.

Why did this come to be?
Mainframe DBMS code generally
has been very big (.5 to 2 MB,

depending on the product), and
typically has had to be able to
handle several programs at the
same time. It also has tradition¬
ally wanted to buffer lots of data,

just like an operating system’s
file system.

Because of these design issues,
database systems usually have

been implemented with front-

end/backend architectures. The
“backends” have typically con¬
tained DBMS software machines
capable of performing fast in¬
dexed retrievals, storing new
data, and maintaining indices.
The front-ends either have of¬
fered user programs that were
linked to DBMS software through
a programming language inter¬
face library, or collections of
DBMS tools like interactive query
languages, screen packages, or
report writers.

Is the front-end/backend ar¬
chitecture essential? Can UNIX
provide it? The answers depend
chiefly on the size of the machine.
Small machines usually don’t
have many users and, as a result,
don't need the two-process archi¬
tecture as much as larger ma¬
chines. In fact, the overhead of

Continued to Page 98

UNIX REVIEW AUGUST 1985 41

rABASE
EMMAS

An interview with Peter Weinberger

Within AT&T Bell Laborato¬
ries, Peter Weinberger is known
for many things. One is his
knowledge of how databases
work under UNIX.

As head of Computer Sys¬
tems Research at the Labs,
Weinberger is concerned with
more than just data manage¬
ment. But that nevertheless is
where he made his mark nearly
10 years ago when he joined
with Alfred Aho and Brian Ker-
nighan to develop awk, still one
of the most powerful data ma¬
nipulation tools available un¬
der UNIX. (The command name
itself stands for "Aho, Wein¬
berger, and Kernighan"—a
classic example of just how
obtuse UNIX mnemonics can
be.) Since those days, Wein¬
berger's database interests
have branched into new direc¬
tions, as evidenced by a paper
he published in the November,
1982, issue of the Bell Sys¬
tem Technical Journal, "Making
UNIX Operating Systems Safe
for Databases".

He claims his focus is now set
elsewhere, but the insights that
lace his responses to the ques¬

tions that follow would indicate
otherwise. Contributing Editor
Ned Peirce, a consulting sys¬
tems analyst, delivered the
queries.

REVIEW: How well does the
UNIX system support da¬
tabases?

WEINBERGER: There are two
issues that come to mind. First
of all, there is the commercial
issue. I do not really understand
the commercial issues and the
ground rules for discussing what
you need in various types of
products. That has a lot to do with

marketing, and I explicitly dis¬
claim any understanding of
marketing.

The other question is: what

would it take to make UNIX
suitable for various kinds of data¬
bases—small databases, big da¬
tabases, United Airlines reser¬
vation systems, and all the rest of
it? This is the question that
interests me. Does UNIX require
big changes to handle database
systems? Here, “database sys¬
tems” roughly means conven¬
tional transaction processing.

42 UNIX REVIEW AUGUST 1985

sary, since it could almost be
replaced by cat.

REVIEW: I am told that you
have some interesting insights
into the problems database sys¬
tem designersjaced during the
development oj the United Air¬
lines reservation system.

WEINBERGER: No special in¬

sight. What I heard was that
though they always bought the
biggest and fastest computers,
they still wanted more. They
weren’t so worried about reliabil¬

ity, though.

REVIEW: They had a capacity
problem?

WEINBERGER: A real capacity

problem. If you think of transac¬
tion rates measured in hundreds

per second, which they were, and
allow yourself a little growth

while you do your research, you
find yourself considering transac¬
tion rates of thousands per sec¬

ond. This starts to get pretty

tricky. If I want to go to disk, I

know it used to take 30 msec to
get a block off the disk. But if I

assume there’s been improve¬

ment, and that the time it takes to
get a block off the disk might go

down to 10 msec...

REVIEW: It won't leave much
time to do anything.

WEINBERGER: That’s right. You

need lots of disks so that you can

get all these things done in time.

REVIEW: Or run the risk of
losing data?

WEINBERGER: Right. It’s a real
problem. Now that memory is

getting cheaper you might be able
to keep much of the database in

memory.

into reliability problems?

WEINBERGER: You have to de¬

cide what you’re going to do about

logging, and what you’re going to

a A s your view of the

world changes—and

as your customers'

view of the world

changes—your

database will get

weirder and weirder

do about backups, and what

you’re going to do about memory

card failures. I’m not sure you

have to actually do anything
about memory card failures, but
it is one of the questions that
arises. After having decided all
that, you then get to decide what
you're going to do about access

structures on the disk. You can
use B-trees or some kind of clever
hashing scheme that matches the

fact that you copy in disk blocks

as the fundamental unit of ac¬
cess. But, that’s not what’s going
on in memory, right? Memory can
get at individual words equally
fast, so you can try to change the
access structures or you can for¬

get about it; it may not make any
difference. I don’t think it’s all

that hard. It is an intriguing way
of getting more performance,
though. Just put a few hundred
megabytes of memory on your
machine and move large parts of
the database into memory and see

what happens.

REVIEW: Wouldn't you need
some scheme for reading the

I (01
medium?

WEINBERGER: I don’t think you

should leave it to good fortune.

You would need to have a piece of

the algorithm write log records. 1
think you could write whatever
you would have normally written
had the data been on disk.

You also need ways to handle
the kinds of high transaction
rates you can expect when you get

lots of people typing and submit¬

ting transactions at the same
time. In that situation, the system

won’t respond to transactions
right away when it processes

them. It won’t respond until it has
batched up all the little transac¬
tion records, written the log, and
written the whole thing out to
disk. Only then will it respond to
all those people. If you’re doing

1000 transactions a second, you

can write very large log records

because you can do them 100 at
a time. You can do that because

you only have to write 10 large
blocks a second, which is easier

than 100 or 1000. A delay of a
tenth of a second in a response is
barely perceptible. So the scheme
should work okay. There are a lot

of little questions and details,

though. It sure wouldn’t look
much like a timesharing system.

REVIEW: Would it look like a
UNIX system?

WEINBERGER: It could look like
a UNIX system, but you would
never actually see the UNIX sys¬
tem itself. Let’s say you turn on

your machine for the first time
and then load up all this software
that eats up all your memory.
That would not encourage people
to do a lot of software develop¬
ment or whatever on the system.

That’s to say that for all that
work, you will not have solved

any of your problems except lor
speed. All the problems of inde¬

pendent transactions, safety, and

deadlock still have to be dealt

still there.

REVIEW: And all that requires
hacking in the kernel?

Continued to Page 100

Phittos by George Peirce/Studio 84 UNIX REVIEW AUGUST 1985 43

WEINBERGER INTERVIEW

REVIEW: How would you go
about putting a database sys¬
tem together under the UNIX
system?

WEINBERGER: There seem to be
three approaches—or some num¬
ber like three. People who build
database systems under UNIX
can build them without using the
UNIX file system; that is, they can
take a raw disk and use some
scheme like shared memory to
make buffering to the disk more
efficient and easily controlled by
the database management sys¬
tem. This means, though, that
they have to implement their own
concurrency control mechanisms
to make sure transactions don’t
stomp on each other in unaccep¬
table ways. That’s been done in a
fair number of products sent out
by Bell Labs to operating phone
companies. The people who keep
track of cable repair work have
database systems of this sort.
These are transaction processing
systems that are at least partly
run on UNIX. They just use a raw
disk scheme to take control with¬
out making big changes in the
kernel.

Another approach is to go
whole hog and get out the data¬
base literature, read through all
the concurrent control stuff, and
say, “Well, we’ve just gotta put all
that stuff in the kernel.” That
would be fairly remarkable, but
it’s sort of possible.

The question is: might there be
an intermediate approach that
could give you control where you
absolutely need it without distort¬
ing the underlying image of UNIX
too much?

REVIEW: And in that way see
to it that the kernel remains
useful to other people?

WEINBERGER: That’s right. You
don’t want to distort the kernel
too much. It’s fairly plastic, but if
you stretch it a lot, it gets sort of
rigid. You want to avoid that. But

solutions are still more or less a
research question. My view is
that putting a database system
together under UNIX is possible,
but that a couple of problems will
have to be solved along the way.
Some of those problems are hard
and some are easy.

The easy part is the control of
stuff in the system—making sure
that disk buffers have gone onto

44i
I explicitly disclaim

any understanding of

marketing.*}

disk, so that if the system crash¬
es, you’ll know what the state
was—that sort of thing. That’s
all fairly trivial.

REVIEW: Ordered rights, that
type of thing?

WEINBERGER: Yes, and if neces¬
sary, a special system call that
flushes out all the disk buffers
associated with a specific file. The
conventional image of a database
system is that a single process is
in charge that somehow keeps
track of everything. The classic
UNIX system approach to it would
be that roughly each terminal,
each person, each transaction
would have a process, and then
somehow you would have to get
the processes to communicate
among themselves to resolve
deadlocks. Apparently, one of the
most efficient ways of controlling
concurrency in databases is to
lock shared resources.

REVIEW: If something's locked,
do you just keep retrying until
it's unlocked?

WEINBERGER: You have differ¬
ent choices there. The real ques¬
tion, though, is: what happens

when you get a lock on something
and somebody else wants a lock
on it as well. They can wait for a
small amount of time and try
again, or they can somehow regis¬
ter a request that says, “Let me
know when the lock becomes
free.”

REVIEW: And then sleep on it?

WEINBERGER: Lots of commer¬
cial systems have these things
that allow you to enqueue on a
lock and then somehow get ser¬
viced later. There are two parts to
this. One is that if you have a
database system in which there
are lots of lock conflicts, you
probably have an inefficient sys¬
tem. Presumably, though, you
have a system in which you get
very few of these conflicts. If so,
you probably hate to have to go to
the operating system each time
you want to get a lock because
that takes 500 microseconds
or whatever. One good place to
put locks in order to minimize
such objections is in shared mem¬
ory. That way, when there’s no
conflict, you can use some kind
of atomic memory operator to
grab things and lock them. That
works perfectly well when there’s
no conflict. When there is a
conflict, you have two indepen¬
dent processes that have to talk to
each other somehow, and that’s
through the operating system.
The question is: how little can you
put in the kernel to support
locking and deadlock detection?
It’s probably some fairly small
amount.

REVIEW: We're talking about
changes above and beyond
shared memory and record
locking. Are you saying that
those alone are, to some peo¬
ple's minds, insufficient?

WEINBERGER: They are insuffi¬
cient, precisely because of this
problem. Say I’m going to move
money from my account to your

44 UNIX REVIEW AUGUST 1985

account, and you’re going to move

money from your account to her
account, and she’s going to move
money from her account to mine.

Let’s say we all start at once. We
each lock our accounts because
we’re about to change them.
Then we all go out and try to grab
the other accounts because we’re
going to change them too. Now
we’re deadlocked. Somebody’s
got to discover this. And, when
they do, we have to have some

way of dealing with it.

REVIEW: Don't you have a se¬
curity issue if every process can
detect deadlocks?

WEINBERGER: That’s why you
want the kernel involved. That’s
where all the coordination comes

from. There are other ways of
doing it, though.

REVIEW: By creating a large
process that can keep track of
all the locks?

WEINBERGER: You can have one
process that’s in charge of lock¬
ing, lock resolution, and some

kind of interprocess communica¬
tion. The trouble with that is that
bad things can happen. If I lock
my stuff and ask to lock you, and
then I divide by zero and die;
there’s no point in ever trying to
talk to me again. The process in
charge of locks needs a way of
deciding the process has gone
away, but some forms of interpro¬
cess communication don’t pro¬
vide that. Some forms might, but
some forms don’t. The kernel,
though, always knows.

REVIEW: It also runs at a very
high priority.

WEINBERGER: That’s not as im¬

portant as knowing it all. The
hope is that these funny dead¬

locks are quite rare.

REVIEW: You mean you hope
things occur promptly enough?

WEINBERGER: The hypothesis

is that locks don’t conflict very

often, and that it requires three

conflicts, roughly, to get a dead¬
lock. That means deadlocks

should be quite rare.

REVIEW: It's hard to prepare
for those instances since they
depend on the size of the data¬
base and the way it is used.

WEINBERGER: Yes. That’s one

of the dilemmas the poor data¬
base administrator is supposed to
keep up with. You know how it
is—any time you don’t know how
to deal with something automati¬
cally, you say, ”Oh well, it’s up to
the database administrator to
handle that.” The database ad¬
ministrator is supposed to know
all about how the database
works, and if it’s not working very
well, then of course the adminis¬
trator gets stuck with fixing it.

Before saying how, we should

digress slightly to talk about an
argument concerning this busi¬

ness of detecting deadlocks. If you
look for deadlocks too often, you’ll
end up spending a lot of time
looking. But if you look for dead¬

locks infrequently, things might
stay deadlocked for long time.
This gives rise to some kind of

cost/benefit curve. If you plot the
two crossing curves, you’ll find an

optimal point in the middle. Jim
Gray was the one who made this

observation originally.
There’s a lot of detail known

about low-level implementations
of database systems. You just
have to decide how much of that

kind of stuff to use. Implementing
a flexible transaction processing
database system nowadays is a

lot of work. You have to get at the

low-level stuff—which I find in¬
teresting—and then you have to
get all the user interface, validity
checking, bulk loading, forms
package, and terminal handling
stuff together.

REVIEW: I suppose this sort of
work is being done over and
over again, even within the
Labs.

WEINBERGER: Yes. Whenever I
have had a project, I’ve never felt I
was building a database sys¬
tem—I’ve felt as if I was working
on a project. It might be that the

project needed a database system

because perhaps there was none
available that was quite suited to
my needs. There are a lot of these
tradeoffs to make, and I want to
make the ones that favor my
world. That means that when the
next person needs a database
system, they might discover that
my design is a little too special-
purpose to suit their needs. So
they’ll just have to do another
one.

REVIEW: It's also true that
those other people might never
have heard of your database
system.

WEINBERGER: That’s also quite
possible. But there are relatively
few systems that have the sort of
transaction processing and reli¬
ability you might want in the
event of a crash.

REVIEW: Does the limited num¬
ber of systems relate to difficul-

UNIX REVIEW AUGUST 1985 45

WEINBERGER INTERVIEW

ties with UNIX?

WEINBERGER: Not really. It’s
more of a reflection of the fact
that it takes a lot of work to build
one of these things. If you don’t
need it, why bother?

REVIEW: Is it appropriate for
the UNIX system to provide
database facilities as an
option?

WEINBERGER: The question be¬
comes: are you going to provide
the whole thing as a single unit,
or are you going to provide pieces
only.

REVIEW: The UNIX system is
like a toolkit now.

WEINBERGER: That’s my feel¬
ing. Separate the two things—the

pieces that you would definitely

want to put in the system and the

stuff that’s sort of high level, like
the real database systems.

REVIEW: Would that mean you
could use whatever forms pack¬
age you wanted?

WEINBERGER: Well, you might

provide one of those also, but you
would be able to separate every¬

thing into the two types of
offerings.

REVIEW: If you're trying to de¬
sign a series of database tools
that would be generic to UNIX,

would you try to adhere to some
particular query language. like
IDL, or do you think that whole
issue needs to be re-thought?

WEINBERGER: I do not know
enough to answer that question.
There are some query languages
that seem appealing, either be¬
cause they’re widely used, or
because they’re supposed to be
very easy to use. Query By Exam¬
ple and these other sorts of lan¬
guages for filling out forms are
often talked about. Query lan¬
guages and transaction process¬
ing are really two quite different
things, though.

44-y-
I he kernel is fairly

plastic, but if you

stretch it a lot, it gets

sort of rigid.M

REVIEW: What kinds of data¬
base things can be done on the
UNIX system as it stands?

WEINBERGER: The UNIX sys¬
tem, as opposed to a lot of the
systems on which these things

were first built, already comes
with a bunch of commands that

you can use to search text files.

REVIEW: Such as awk?

WEINBERGER: Sure, awk, grep,
or whatever.

REVIEW: Did you design awk to
be easy to use?

WEINBERGER: As I remember,
when we designed it, the idea was
to make a lot of the syntax like C
so that other people in the center
wouldn’t have to learn much new
stuff. It wasn’t designed to be
particularly easy to use.

A project called POPLAR was

underway at Xerox PARC at

roughly the same time. Their
goals were moderately similar to
ours, but in many ways more
ambitious. It is not a very fair
comparison. The Xerox guys were

producing a functional language
that was fancy and had a couple

of very cute ideas in it. It was also
designed to be easy to use. But the

end result was that lots of people
use awk and nobody uses
POPLAR.

REVIEW: Strange.

WEINBERGER: Life is strange. I
think it had more to do with the

environment the programs were
run in. It’s easier to use stuff in
UNIX—it fits together better. The
stuff in their environment at the
time was harder to use. There

was no easy way, for instance, of
joining independent programs
together.

REVIEW: Do you think tools
like sort and awk became popu¬
lar because the UNIX system
became so popular?

WEINBERGER: Yes, but I think it
goes both ways. The fact that
UNIX came with a bunch of useful
little tools is one of the reasons it
got popular.

REVIEW: What are the limita¬
tions of using UNIX tools like
grep, awk, sort, and the like?

WEINBERGER: First of all, they
work on text files only. It is
possible to build databases solely
out of text files since you can keep
the data in text files and have
special-purpose index trees ac¬
cess the data. You can also have
tools that generate the indexes.

Many years ago, when there
was a big debate about how hard
it was to build relational database
systems, I built a toy relational
database system as a demonstra¬
tion. It was made up of ordinary
text files and it built its indexes so
that programs, when given an

46 UNIX REVIEW AUGUST 1985

UNIX SYSTEM V. SOFTWARE THAT STACKS UR
High-quality application software written
for UNIX System V is available now. And
new business programs are continually
being developed.

That means increased market oppor¬
tunities for VARs and ISVs. And end
users can be certain their investment in a
UNIX System V-based computing sys¬
tem is a smart, sound one.

Quantity and quality
The market for products that are based on
UNIX System V has grown significantly
over the last two years. There are now
hundreds of packages written for UNIX
System V. And this growth will continue.

Quality applications—general busi¬
ness packages and development tools—
are now available for the AT&T UNIX PC.
And AT&T is putting together even more
hardworking, industry-specific software

to run on AT&T 3B2 and 3B5 Computers.
With so many packages available,

VARs can offer more turn key systems
based on UNIX System V to an ever¬
growing customer base. ISVs can sell
software to even more customers. And
end users can invest in a UNIX System
confident there is plenty of quality
software available.

Software you can bank on
UNIX System V has gained acceptance as
a powerful, versatile computing standard.
More hardware vendors like NCR, Altos,
Motorola, Perkin-Elmer and Sperry are
joining AT&T in offering products based on
UNIX System V.

And weVe introduced the System V
Interface Definition. Software written
under the Interface Definition can run on
current and future releases of AT&T’s

UNIX System V, as well as various Sys¬
tem V derivatives offered by AT&T
licensees. So there will be an even larger,
more comprehensive base of portable
software from which to choose.

Our comprehensive UNIX System V
Software Catalog lists a full range of pack¬
ages that run under UNIX System V. For
end users it’s a reference guide to the
programs available. And for developers it’s
a smart way to ensure packages will have
even greater exposure to the growing
UNIX System V market.

To learn more about UNIX System V
market opportunities, order the UNIX
System V Software Catalog—at $19.95
plus tax. Call 1-800-432-6600 and ask for
Operator 397.

UNIX System V. From AT&T.
Consider it standard.

AT&T
The right choice.

© 1985 AT&T Information Systems.

WEINBERGER INTERVIEW

index, could produce all their
records in index order. Because of
that, you could run grep or sort
on that data and then put it back
in the database. It wasn’t a won¬
derful system, but it worked.

REVIEW: How absolute are the
limitations of text files? If you
treat some of the text as num¬
bers, what do you really lose? Is
conversion going to slow you
down a great deal?

WEINBERGER: If you keep your
database in text files that are
indexed by separate files, you
have to be careful that people
don’t change the text files without
changing the index files. Where¬
as, a database system that takes
your data and squirrels it away
itself gives you no choice but to
use database programs to get at
the data. The other problem is: if 1
do a lot of updates on my text file,
it’s likely that I will keep adding
stuff at the end. That means that
if I’m scanning the text file. I’m
going to detect a lot of records that
aren’t there anymore. That’s go¬
ing to make work a little inconve¬
nient, so I’m going to have to do
something about that. With a bit
of discipline, though, there’s no
particular reason why this sort of
scheme shouldn’t work fine. It
doesn’t quite seem to fit into good
retrievals, though.

There is another interesting
question concerning efficiency
where I’m on both sides. If I have
a database I want to deal with
fairly efficiently that contains
things like numbers, is it better to
store the numbers in ASCII as a
text file, or should I store the
numbers in binary so I don’t have
to convert them? A group at
Whippany [the Whippany, NJ,
installation of Bell Laboratories]
decided that they had been forced
to convert their project once too
often. They said, “This is silly.
Why not give up 15 percent of our
performance and just keep the

stuff in ASCII?’’ The performance
hit was only that big because of
the work their databases did. If
their typical retrieval had been,
“What is the average salary at
Bell Labs?”, switching over to
ASCII would have been expen¬
sive, but that wasn’t the case.

REVIEW: They were not doing
conversions during searches?

WEINBERGER: That’s right. A
lot of the work in a transaction
database system goes into finding
records and saving logs. A lot of
CPU cycles go into that, but
converting numbers isn’t all that
slow. That’s one argument in
favor of keeping your database in
a sort of “texty” format.

REVIEW: I imagine it's also
easier to fiddle with the data in
text format.

WEINBERGER: You want to a-
void fiddling with it, though, be¬
cause you don’t know how many
access paths exist or how many
ways there are for looking things
up. If I build a static index of some
sort to keep track of data, and
then you go and fiddle with the
data, you’re probably going to
mess up the index, which would
be quite embarrassing.

REVIEW: What are the real ad¬
vantages of going to text? What
made the Whippany people
want to stay with it?

WEINBERGER: It is so much
more portable.

REVIEW: They didn't have to
be concerned about byte
ordering?

WEINBERGER: That was their
problem. They got into this either
because they were converting
their systems or because a data¬
base that was being built over¬
night by an operating company
on an IBM machine was going to
be moved to some UNIX machines
in the morning. There was just no
question about the portability of
text on the whole. So long as you
kept your character set under
some sort of control, most of the
translation was well understood.

REVIEW: There are, in fact,
UNIX tools available for typical
conversions.

WEINBERGER: Right. The bit¬
fiddling stuff may be worthwhile
on a big project, but writing your
own conversion programs for a
small project only adds complex¬
ity. If I want to replace some
11/70s with 3B20s in a project
that stores binary data in files, I
can’t just slide one machine
out—I have to slide them all out.

One of the things that’s not
very modern sounding, insofar as
type checking is modern, is the
fact that the common intermedi¬
ate file format in the UNIX system
is basically a text format. Pipes
connect text files and make it all
wonderful.

There are a few things that
aren’t stored in text files, prob¬
ably for reasons of efficiency.
Even in a couple of those cases,
though, you could probably store
things in text files just as easily.
Take directories, for instance;
they probably don’t need any
binary. It would make Is unneces-

48 UNIX REVIEW AUGUST 1985

Backend machines for
data management

by Paula Hawthorn

• KMCfc)

PUTTING
DATABASE

WORK IN
ITS PLACE

A database machine is a spe¬
cial-purpose computing system
dedicated to the management of
data. When used as a backend
processor, it can provide signifi¬
cant performance advantages.
This article explores how.

The generic term “backend
machine” refers to a computing
system designed to work in tan¬
dem with a “front-end” com¬
puter. While the front-end
handles general computing, in¬
cluding the management of the
user interface, the backend pro¬
cesses those commands sent to it
by the front-end. The machine’s
general-purpose processor thus is
freed to perform other work. The
two major commercial incarna¬
tions of backend machines are
database machines and array
processors.

Two Rales. Backend machines
are developed when: Rule 1) a
task that consistently consumes
significant general-purpose com¬
puter resources comes to be re¬
garded as a major source of per¬
formance problems, and Rale 2)
the task can be executed indepen¬
dently with a minimum of data
and control structure communi¬
cation. Both conditions are satis¬
fied by array processors and data¬
base machines.

Array Processors. An array
processor is a backend machine
that accepts data (such as a
matrix) and performs, indepen¬
dently of the front-end, some
function on the data (such as an
inversion). The changed data can
then be returned to the front-end.
Array processors are typically
attached to computer systems
where matrix manipulation func¬
tions consume a heavy percent¬
age of CPU time and take a long
time to complete. An array pro¬
cessor can benefit a front-end
computer by offloading it, thus
making the CPU available for
other tasks. In addition, an array
processor can run faster than a
front-end computer because it
contains special hardware and
software for array manipulation.

Database Machines.The data¬
base management systems that
are functionally complete—those

UNIX REVIEW AUGUST 1985 51

Illustration by Hynn Kim

BACKEND MACHINES

providing multi-table commands,
transaction management, and
protection—also require a signifi¬
cant amount of the processing
power afforded by any computing
system. A functionally complete
database management system
(DBMS) can contain more lines of
code and be more complex than
many operating systems because
it must not only manage re¬
sources but also attempt to opti¬
mize high-level user commands.
Several users running concur¬
rent, complex queries on a single
computer can cause all other
users to scream with frustration
because the tricks that the DBMS
can play to optimize database
response time (such as locking
buffers in memory, monopolizing
disks with long I/O exchanges,
and more) are just the sort of
actions that can drag down re¬
sponse time for other users. A
DBMS, then, qualifies for a back¬
end machine of its own if only
because it satisfies the first rule
by placing an onerous burden on
the general-purpose front-end
processor.

The second rule, which re¬
quires that the backend act inde¬
pendently of the front-end in
order to keep the two from spend¬
ing all their time exchanging data
and control information, is satis¬
fied only if the relational database
model is used. Commands in the
relational model are at a high
level where information and data
are exchanged in sets of values.

An additional reason that rela¬
tional data management systems
are good candidates for executing
in a backend machine is that they
make it possible to pose and enter
very complex, resource-eating
commands instantly. In a naviga-
tional-oriented data model, these
commands might take weeks to
program. The relational model
thus greatly benefits the person
who needs to run a query, but
distresses other users who at¬

tempt to use the computer for,
say, editing. The solution? Send
these complex queries to the
backend machine, where they
can be run independently of the
front-end system.

FUNCTIONAL
DIFFERENTIATIONS

A “functionally differentiated”
multiprocessor system is one
where each of the processors are
limited to permanently assigned
tasks. By assigning the proces-

It seems

counterproductive to

weigh down general-

purpose operating

systems with a large

group of specialized

commands.

sors their tasks at system design
time, control functions (those
instructions that tell the pro¬
cessors what to do) can be min¬
imized.

Functional differentiation does
work well in a backend system
because the front-end can be
used for general purpose process¬
ing, while only those functions
the backend is designed to handle
need be sent there. The backend
can then be designed exclusively
for a narrow set of tasks. Data¬
base machines and array proces¬
sors both exemplify functionally
differentiated machines.

To further discuss database
machines, I’m going to use Brit¬
ton Lee’s Intelligent Database
Machine (IDM). I could just as

well have used the Teradata
machine [1], which is another
commercial machine, or one of
several academic machines (see
bibliography), but the one I am
most familiar with is the IDM.

Host Functions. A block dia¬
gram of the IDM is shown in
Figure 1. In it, multiple users are
connected to front-end systems,
which could be single-user per¬
sonal computers or more power¬
ful multiuser systems. From the
DBMS user’s perspective, the
chief task of the front-end is to
parse the user’s database com¬
mand and send it to the IDM. This
is performed in the “host” or
front-end box, where we find the
“host interface’’. Here resides the
program that translates the com¬
mands to the parse trees that are
then sent on to the IDM.

Thus, in the functional differ¬
entiation model, we see that the
host is committed to receiving
and translating commands. The
database machine is committed
to handling all transaction man¬
agement, recovery, security, and
protection issues surrounding the
commands, as well as executing
them.

The interface to the database
machine could have been differ¬
ent: in an early, important re¬
search project (the Relational As¬
sociative Processor [2]), partial
queries were sent across to the
database machine. In concept,
one could also send direct user
input to the machine, but by
waiting until full queries can be
syntactically verified, user mis¬
takes can be screened out. There
are other advantages to splitting
the multiprocessors: one comput¬
ing system (the front-end) is left to
concentrate on the screen man¬
agement and query definition to
the point that standard database
commands are formed. Then the
standard commands can be acted
on by a machine that has been
explicitly designed for that pur-

52 UNIX REVIEW AUGUST 1985

pose. This split (parsing in the
front-end, execution in the back¬
end) was first used by DeWitt on
the Wisconsin database machine,
DIRECT [3].

Channel Functions. Figure 1
shows that data commands enter
the backend system via a chan¬
nel. This represents another op¬
portunity for functional differen¬
tiation: each channel has a
dedicated processor for handling
communication between the out¬
side world and the database ma¬
chine. Services for buffering, pro¬
tocols, and other functions can
thus be offloaded from the data¬
base machine. The channel sim¬
ply notifies the main processor
after it receives a command that
there is something new to do.

Processor Functions. The IDM
has two processors dedicated to
command execution: a general-
purpose processor (a Z8000), and
a Britton Lee-designed processor
named the Database Accelerator
(DAC) [4]. The DAC is an 8 mips
reduced instruction set machine
focused on data management. It
can be called as a co-processor by
the general-purpose processor via
subroutine calls.

The IDM has two processors

for general command execution
because it was decided that to
handle up to 16 disks and still
stay within bus/shared memory
bandwidth limitations of the ar¬
chitecture, two would be enough.
This particular architecture was
designed around a target system,
a target customer base, and a
target timeframe for a deliver¬
able, reliable system (see Design
Decisions, [5]). A number of other
approaches might be equally well
suited to different market par¬
ticulars. For instance, the Tera-
data machine contains more pro¬
cessors to support a greater
aggregate processing power. It
offers a large number of proces¬
sors arranged in a tree-intercon¬
nect pattern and is correspond¬
ingly more complex than the IDM.

The functional differentiation
of the processors within a back¬
end machine comes from two
sources: the hardware (as in the
DAC), and the specialized operat¬
ing system selected to serve a
dedicated environment.

Operating System Functions.
In a dedicated machine, optimiz¬
ations can be utilized in a way
that would be difficult in a gener¬
al-purpose environment. For in¬

stance, in the IDM, the only
function of the backend machine
is data management. Therefore,
at every possible point, the data
management operating system is
cognizant of the special environ¬
ment in which it is acting. For
instance, the buffers are man¬
aged according to a scheme that
recognizes types of buffers, and
thus knows which ones need to
stay in memory longer; the pro¬
cess manager shows a special
sensitivity to data management
by taking care not to schedule
out processes before they are
done with their buffers; and the
disk allocation algorithm allo¬
cates space in a manner appropri¬
ate to databases.

Much has been written about
the problems that general-pur¬
pose operating systems give data
management systems [6, 7, 8],
but the point is not that general-
purpose operating systems are so
bad, but that functional differen¬
tiation is so good. In the IDM,
the operating system and the
data-management system were
written as a single entity. There
are occasional attempts to in¬
clude more specialized operations
in general operating systems so
as to make data-management
systems run more efficiently. But
it seems counterproductive to
weigh down general-purpose op¬
erating systems with a large
group of specialized commands.
My view is that data management
should be carried out on a ma¬
chine designed especially for it—
and that general-purpose operat¬
ing systems servicing general-
purpose machines should be kept
relatively simple.

Controller and Disk Func¬
tions. The IDM also includes con¬
trollers, each with its own pro¬
cessor. Ordinary, commercially
available disks are used to store
the data that the IDM controls.
This distinguishes it from the
British database machine, CAFS

Figure 1 — Block diagram of the Britton Lee Intelligent Database
Machine (IDM), exhibiting functional differentiation in a backend system.

UNIX REVIEW AUGUST 1985 53

fo • rum, n. (pi. FORUMS)
1. A public meeting place for
open discussion. 2. A medium (as
a newspaper) of open discussion
or expression of ideas. 3. A pub¬
lic meeting or lecture involving
audience discussion. 4. A program
involving discussion of a problem
by several authorities.

^ Forum
lb,. I In I"—

*eForum designed by Marcus Watts, Copyright 1984,

Network Technologies International, Inc. (NETI).

Electronic meetings continue the
automation of knowledge transfer which
started with electronic mail.

Electronic meetings are an extension of the
communications revolution which started with
electronic mail. It takes seconds to send a letter
using electronic mail instead of days via
regular mail. Certainly e-mail is a giant
step in automating correspondence between
two people.

eForum goes yet further to provide
immediate communications automation. But
for groups. It creates electronic meetings
which allow attendees to participate in
discussions using the dynamic ebb and flow
of points, counterpoints, comments and

conclusions just like in-person meetings.
From an economics point-of-view, eForum

is the most cost effective method for bringing
together the best minds in your company to
meet on key issues—without the price of a
single plane trip, the aggravation of schedule
conflict or time-consuming delay.
eForum is a communications breakthrough
product.

eForum lets you create electronic meetings
with attendee lists as large as the company staff
or as small as a three-person design team.

Not only can eForum handle hundreds of
meetings for your company, but, at the same
time, limits each participant to only attending
meetings to which he belongs.

eForum, n. 1. Low cost electronic
meeting system (as in needing no
scheduling or travel to attend), v.
1. Automatically organizes, indexes,
files and leaves a complete written
record of entire meeting. 2. Allows
adding more attendees than normal
at no extra cost. 3. Gives plenty of
time to think before responding,
adj. 1. Keeps everyone up-to-date.
2. Doesn’t let geographic or time
zones determine who can attend
the meeting.

The Electronic Meeting Manager

If you have ever attended a meeting,
you know how to use eForum.

Simply attend eForum meetings any time
convenient for you. Review new discussion
materials. eForum keeps track of what you’ve
seen. Enter your comments or new discussion
points. Instantaneously, your ideas are
available to every member of your eForum
group regardless of geographic location.
That’s productivity.
eForum has the flexibility to fit your
communications needs.

• eForum 4000 - a national communications
network available with a local phone call
from most locations.

• eForum 2000 - UNIX™ based central host
software for supermicro and minicomputers.

• eForum WS - software for the IBM PC and

compatibles to interact with eForum central
host software.

Call 1-800-638-4832 or in Michigan call
(313) 994-4030 collect for information on:
• Automating your company’s meetings by

using General Electric Information Service,
the world’s largest communications network,
to tie together your microcomputers and
terminals.

• Creating your own meeting network for your
department or company. Software, hardware
and leasing available.

• Establishing OEM and VAR agreements
to enhance the value of your software or
hardware, with the communications power
of eForum. Circle No. 46 on Inquiry Card

Network Technologies
International, Inc.

The Arbor Atrium Building
315 West Huron

Ann Arbor, Michigan 48103

'“UNIX is a trademark of AT&T Bell Laboratories
' 'eForum is a trademark of Network Technologies International, Inc.
(NETI)

BACKEND MACHINES

(made by ICL), in that CAFS uses
specially designed multiple-read¬
out disks [9]. A multiple-readout
disk transfers data from all its
disk heads at once and therefore
sustains a much larger transfer
rate than a conventional disk,
which transfers data from one
head at a time. CAFS has used the
design to enable the fast scans of
databases that are needed in
applications where there are no
useful indices. The absence of
useful indices means you must
read the whole file to get an
answer to a query. The CAFS
system speeds up that process
because the disks themselves are
functionally differentiated.

This is not necessarily desir¬
able in all instances, however. In
the case of Britton Lee, it was
decided not to develop and manu¬
facture such disks because it was
thought that the performance
benefits of increased bandwidth
would not justify the added cost
and complexity. Decisions such
as this riddle system design. In¬
deed, one of the harder parts of
designing a dedicated system is
deciding where to use general-
purpose systems, and where to
build specially tailored ones. In
this particular case, it was decid¬
ed that the performance advan¬
tage of multiple-readout disks
was significant only in those
situations where users have no
idea of what they should use as
indices—an occurrence that’s
rare in practice.

IS IT WORTH IT?

Making a functionally differen¬
tiated system is not easy. Special-
purpose hardware and software
must be developed and main¬
tained, and a means of working
with general-purpose hardware
and software must be devised.
The question arises as to whether
it’s all really necessary. If, for
instance, you are having re¬
sponse time difficulties running a

suite of matrix manipulation pro¬
grams, why not just buy a faster
processor? If you want to increase
the number of people using a
database management system,
why not just buy a faster general-
purpose machine? The reason is
simple. The cost/performance
ratio is much better for function¬
ally differentiated systems: fast
array processors are cheaper
than equally fast general-purpose

One of the harder parts
of designing a

dedicated system is
deciding where to use

general-purpose
systems, and where to
build specially tailored

ones.

machines. Likewise, fast data¬
base machines are cheaper than
equally fast general-purpose com¬
puter systems packaged with
DBMS software. It’s easy to un¬
derstand the cost/performance
differences simply by doing a
parts count: general-purpose sys¬
tems require more parts (compil¬
ers, interface requirements, com¬
patibility requirements, as well as
a variety of devices). General-
purpose systems also cost more to
build and maintain than single¬
purpose systems—costs that you
can be sure are passed along to
end users.

There are several factors that
cause people to want to use
backend database machines, as
detailed in “Why Database Ma¬
chines?’’ [10]. The opportunity

for heterogenous hosts to share a
centralized database, and the
ability of a database machine to
act as a network server are
among the most important fac¬
tors. These could be accom¬
plished without the use of a
functionally differentiated sys¬
tem; a distributed database sys¬
tem would work equally well. But
two other factors—reduced cost
and faster database access—
are powerful arguments favoring
dedicated database machines.

CONCLUSION

If we take array processors as
an example, we can see how the
product evolution of database ma¬
chines is likely to proceed. Array
processors first surfaced after a
period of academic gestation.
Ideas then became reality as a few
small companies began manufac¬
turing array processors.

The next logical step would be
for major computer vendors to
start up production. But this
has not been true for either array
processors or database machines.
Why? Pretend you are a general-
purpose computer maker. My
speculation is that it does not
make sense for you to offer low-
cost alternatives to the high-
priced high-end systems you
already offer. To commit to manu¬
facturing array processors or da¬
tabase machines, you’d first have
to overcome three objections.
First, why dampen sales of the
general-purpose system you’re al¬
ready offering? Second, why build
competing product lines when
you don’t have to? And, third,
why take on additional develop¬
ment time? It takes a long time
and a sizable commitment of
resources to get a new product to
market; you must decide if you are
willing to make that commitment
to a general-purpose product with
a potentially wide customer base,
or to a special-purpose machine
with a necessarily narrower cus-

56 UNIX REVIEW AUGUST 1985

tomer base. If you already make
general-purpose machines, the
decision must be obvious. For this
reason, backend machines re¬
main the domain of small, spe¬
cialized companies.

It has taken a while for array
processor companies to earn cus¬
tomer confidence in hardware not
built by large general-purpose
computer houses, but the cost-
performance benefits offered by
backend array processors, to¬
gether with good customer exper¬
iences with the companies that
manufacture them has led to the
the presence of several strong
manufacturers and a relatively
large number of array processors.
The same pattern is emerging in
the backend database machine
realm.

With a concurrent prolifera¬
tion of fast, cheap processors and
fast communication networks, an
increasing number of proposals,
designs, and products have come
to include functionally differen¬
tiated multiprocessor systems.
Some of these, such as graph¬
ics display devices, operate as
specialized front-end machines.
Some, such as signal processing
machines, act as semi-stand¬
alone systems. And some, such as
array processors and database
machines, act as backend sys¬
tems. The benefits of creating
specialized devices for handling
complex functions have become
apparent. Further advances in
the use of dedicated machines
surely won’t be long in coming.

BIBLIOGRAPHY
1. J. Shemer and P. Neches, “The

Genesis of a Database Computer”,
IEEE Computer, November, 1984, pp.
42-56.

2. E.A. Ozkarahan, S.A. Schuster,
and K.C. Smith, “RAP—Associative
Processor for Database Management”,
in AFIPS Conference Proceedings, vol
44, 1975, pp. 370-388.

3. D.J. DeWitt, “DIRECT—A Multi¬
processor Organization for Supporting
Relational Database Systems”, IEEE

Trans. Computers, June, 1979, pp.
395-406.

4. M. Ubell, “The Intelligent Data¬
base Machine (IDM)”, in Query Pro¬
cessing in Database Systems, Won
Kim, editor, Springer-Verlag, 1985.

5. R. Epstein and P. Hawthorn,
“Design Decisions for the Intelligent
Database Machine”, Proceedings of
the 1980 National Computer Confer¬
ence, pp. 237-241.

6. J. Gray, “Notes on Database
Operating Systems”, in Operating Sys¬
tems: an Advanced Course, R. Bayer,
R.M. Graham, and G. Seegmuller (ed.),
Springer-Verlag, 1979.

7. P. Hawthorn, “Evaluation and
Enhancement of the Performance of
Relational Database Management Sys¬
tems”, ERL Memo M79-70, Univ. of
California, Berkeley, 1979.

8. M.R. Stonebraker, “Operating
System Support for Database Manage¬
ment”, Communications of the ACM,
Vol. 24, No. 7, July 1981, pp. 412-418.

9. E. Babb, “Implementing a Rela¬
tional Database by Means of Specialized
Hardware”, ACM Trans, on Database
Systems, Vol. 4, No. 1, March 1979.

10. R. Epstein, “Why Database Ma¬
chines?”, Datamation, July, 1983, pp.
139-144.

Paula Hawthorn is the Director

of Product Development for Britton
Lee Inc., where she has participated
in the design of the Intelligent
Database Machine. While working

toward her Ph.D in EECS at UC
Berkeley, she was a member of the
INGRES project. Dr. Hawthorn has
also worked at Lawrence Berkeley
Lab and Hewlett-Packard. She is
currently a candidate for the Vice
Chairperson slot on the ACM’s

Special Interest Group on the Man¬

agement of Data. ■

UJJ uniTED AiRLines

UNITED,
UNIX*
& "C"

United is aggressively developing one of the world’s most sophisticated distributed application
environments. It’s an exciting time at United, and you can become a significant part of it at United’s
Corporate Headquarters Complex in Chicago’s Northwest suburbs.

UNIX MS-DOS
SOFTWARE ENGINEERS &
PROGRAMMER/ANALYSTS

Responsibilities will include working with system architects and other software and hardware
engineers to develop microcomputer systems interconnected by local and wide area networks.
Minimum of 3-4 years “C” or Assembly language design and/or programming experience in a
UNIX or MS-DOS environment are required. Degree in Electrical Engineering or Computer
Science along with demonstrated experience in one or more of the following areas is preferred:

• Distributed or cooperative processing
• SNA
• LAN (Baseband, broadband)
• Intelligent workstations
• Computer graphics
• Real-time applications
• On-line transaction processing
• Network gateways
• Application and database servers

Find out more about United’s dual career paths into management and technical areas, top
salaries, relocation assistance, and pass/reduced fare air travel privileges. Send your resume,
including salary history, to: Professional Employment/ EXOPX-UR, United Airlines, P.O. Box
66100, Chicago, IL 60666. Equal Opportunity Employer.

*Unix is a trademark of AT&T Bell Laboratories.

Circle No. 24 on Inquiry Card

UNIX REVIEW AUGUST 1985 57

T A. here is no trick to distin¬
guishing transaction processing
from the sort of data processing
typically found on UNIX systems.
The two differ in both their trans¬
action administration needs and
their database processing needs,
though the latter requirements
are much better understood in
the UNIX system community
than the former.

Databases used in transaction
processing, of course, must pay
more attention to performance,
concurrency, integrity, and ato¬
micity issues than do databases
used for other purposes. Happily,
a number of commercial DBMS
products based on the UNIX
system already have begun to
solve some of these classic prob¬
lems. On another front, though,
the transaction administration
issues of control and tunability
have been wholly unaddressed by
the body of generally available
database packages. What’s more,
little attention has been paid to
either process architecture effi¬
ciencies or performance-oriented
forms handling.

This should not be taken to
suggest, however, that transac¬
tion processing within the UNIX
system operating environment is
impossible. In fact, transaction
processing has been available for
years inside AT&T, using inter¬
nally developed UNIX system
tools. One such application runs
300 bisynchronous terminals en¬
tering a total of 3500 transac¬
tions per hour, all on a DEC PDP
11/70. With the availability of
shared memory and interprocess
communication in System V,
transaction processing has be¬
come a particularly realizable
goal since no kernel modifica¬
tions beyond the addition of com¬
munication device drivers are
necessary.

B
B

UCKET

BRIGADE

OMPUTING
TRANSACTION PROCESSING
VERSUS TIMESHARING

Transaction processing appli¬
cations tend to be closely tied
to activities that generate rev¬
enue. They can perform much of

Use of the standard UNIX system kernel for
transaction processing

by Kathryn J. Anderson

58 UNIX REVIEW AUGUST 1985

action systems using fourth-gen¬
eration languages. The applica¬
tions are much too complex and
performance is altogether too
crucial.

To do successful transaction
processing requires that a system
administrator be able to both
control and tune the running
application. “Control” requires
that a mechanism exist for giving
preference to important jobs,
while the ability to “tune” allows
the system administrator to dy¬
namically change the priority of
jobs as needs change from day to
day and hour to hour.

Attention to control and tuning
provides a useful basis for con¬
trasting transaction processing
with the UNIX system’s tradition¬
al timesharing mindset.

First, a timesharing workload
is far less predictable than
a transaction processing work¬
load. A timesharing administra¬
tor might know that 10 to 11 am

is often scheduled to run during
off-peak intervals.

Because transaction process¬
ing is used so heavily in revenue-
related activities, it generally is
less cost-sensitive than other ap¬
plications. Companies are typi¬
cally willing to spend more both
for operating expenses (in the
form of well-paid system adminis¬
tration staffs) and development
and maintenance expenditures
(the price paid for data processing
expertise) when they can see a
direct link to revenue generation.
The willingness to spend is
buoyed by the fact that there
aren’t many options. For the
present at least, end users simply
cannot develop their own trans¬

the drudge work necessary
maintain accounts receivable,
for instance. In the course of
these activities, large, complex
databases are acted on by a high
volume of transactions. Most
of these transactions are of
the “bread-and-butter” variety,
meaning that they involve only
short interactions with the data¬
base (less than 10 reads and/or
writes), arrive in predictable pat¬
terns, and are usually manipulat¬
ed by clerical people stationed at
CRTs. Some of the data used in
transaction processing must be
available to many users simulta¬
neously, both for reading and
updating.

Transaction processing also
involves some batch work, in¬
cluding both report and update
programs. Processing of this sort

Illustration by Victor von Heck UNIX REVIEW AUGUST 1985 59

TRANSACTION PROCESSING

is the busiest part of an average
day, but this offers no insight into
the sorts of jobs that will be run
during any one particular period.
Without a clear notion of work¬
load or schedule, the system ad¬
ministrator cannot choose in ad¬
vance the jobs that should have
highest priority. Control is thus
lost.

Secondly, even if the more
important jobs could be identi¬
fied, the UNIX system offers no
mechanism beyond superuser
nice intervention for favoring
them. Using nice alone is not
sufficient. For instance, if a long
running job, say the formatting of
a large document using nroff,
was temporarily of utmost impor¬
tance, nice could not by itself
ensure that it would keep run¬
ning. That’s because the system
offers no systematic capability for
tuning.

Unfortunately, the natural bias
of UNIX system users toward
timesharing and away from con¬
trol and tuning is apparent in the
commercial DBMS products cur¬
rently available.

TRANSACTION PROCESSING
WITHIN AT&T

One of the most widely de¬
ployed UNIX-based transaction
processing systems is known
as the Automated Repair Service
Bureau (Bell System Techni¬
cal Journal, July-August 1982).
ARSB was developed by Bell Lab¬
oratories to verify, record, and
track customer phone service
troubles for the Regional Bell
Operating Companies. It is a dis¬
tributed system capable of run¬
ning 3500 transactions per hour
on each of several PDP 11/70s
connected via a local area net¬
work. The first UNIX system
version of the ARSB was deployed
in 1980, and today over 200
ARSB installations are active
across the country. Originally de¬
veloped on UNIX Release 4.0 with

an early version of shared mem¬
ory and interprocess communica¬
tion, ARSB was recently ported to
standard System V.

The ARSB is just one of several
dozen System V-based transac¬
tional application developments
that have been developed at AT&T
for internal use and external sale.
Many of these systems use tools
that evolved during the ARSB
development.

TRANSACTION
ADMINISTRATION AND
PROCESS ARCHITECTURE

Key to transaction processing
efficiency in the UNIX operating
system is process architecture.
Topical commercial DBMS prod¬
ucts use two processes per termi¬
nal, one for the terminal handler
and one for database processing.
These processes are often con¬
nected via a pipe. As might
be guessed, processes multiply
quickly under this approach.
Had ARSB employed a similar
scheme, for instance, it would
have had to handle well over
1000 concurrent processes (quite
impossible on an 11/701).

For transaction processing, the
process-per-terminal approach is
not much better than one once
taken in AT&T by a group of
System V rookies. These pro¬
grammers, well experienced in
IBM’s IMS, were told to build their
first UNIX system-based transac¬
tional application. In their initial
design, the process-per-terminal
that handled user input would
fork/exec each different applica¬
tion as needed. The exec’d load
module contained both applica¬
tion code and DBMS code. (See
Figure 1 for a representation.)
Fortunately, the system prototype
only had to handle 12 users who
each entered a maximum of 30
transactions per hour. More for¬
tunate yet was the fact that an
expert from ARSB was called in
before the system actually went
into production.

The process architecture inef¬
ficiencies were obvious to the
expert. First, the overhead of the
fork/exec cost the system about
200 milliseconds per transaction
and often led to additional disk
accesses. Second, the application
process opened the database with
each transaction, adding an extra

Figure 1

60 UNIX REVIEW AUGUST 1985

250 milliseconds per instance.

Third, memory was used ineffi¬
ciently since each transaction
was encapsulated in a different

load module. This was the most
subtle of the problems. If five
different terminals were involved
in five different transactions, the
application processes could not
share text—a particularly waste¬
ful problem since 80 percent of
the code, the DBMS part, was
the same from application to
application.

In both the rookies’ approach
and the typical commercial DBMS
approach, there is no central
point through which transaction
requests can be funneled. As a
result, there is no means of
transaction administration—no
way to control or tune transaction
execution. Suppose 10 out of 50
users were to start up long-
running database scans. Since
the typical DBMS product uses an
application process per terminal,
the requests can’t be throttled by
single-threading them. Even if
they could, how would the system
administrator be able to see to it
that some long-running transac¬
tions enjoyed a high priority? For

example, a bill printing transac¬

tion is almost always more impor¬
tant than the printing of a mar¬
keting summary report, but it

would be extremely difficult to
tune for temporary favoritism in
process-per-terminal schemes.

The ARSB system allows for
transaction administration by
taking a “bucket brigade” ap¬
proach to process architecture. A
set of about 100 cooperating pro¬
cesses, known as the Group, is
started at system boot time by a
module known as the Group Man¬
ager. Each process runs contin¬
ually as a daemon. Input is first
processed by the terminal han¬
dler, which is a single user-level
process capable of handling all
300 terminals. The input is then
passed via System V messages to
a parser/validator, where it in
turn is passed to an appropriate
application process running back
and forth to one of two identical
DBMS processes. One transac¬
tion visits an average of five
processes, while three or four
transactions reside together at
any one time in a “brigade”. (See
Figure 2 for a representation.)

This implementation removes

the process architecture ineffi-

ciencies of more conventional
DBMS approaches. Daemons that
are running continually cause

only one fork/exec to be executed
per day, just as database pro¬
cesses only need to open appro¬
priate databases once a day. Du¬
plicate modules, in the meantime,
can share text. Control and ad¬
ministration, however, are im¬
plicitly achieved. The Group is
pre-tuned for the ARSB applica¬
tion and hardware configuration,
both in terms of the means by
which transactions proceed from
process to process, and the num¬
ber and type of processes that are
started.

All of these advantages also
can be achieved using other ap¬
proaches. In the case of the
rookies’ application, a “name
server” strategy was used to solve
their process architecture prob¬
lem. As in the ARSB, System V
messages were used, and there
were far fewer processes than
users. However, the architecture
was not implicit in a Group
Manager—instead, a requesting
process used a name server to see
where it needed to go to get the

THE BUCKET BRIGADE PROCESS ARCHITECTURE

Figure 2

LYRIX WORD PROCESSING.
THE DAWN OF A NEW ERA

FOR UNIX" SYSTEMS.

State-of-the-art word processing developed specifically to harness

the power of UNIX-based systems. A breakthrough in business productivity

and a cornerstone of the multi-user automated office.

Adaptable to any language, it’s available worldwide for more UNIX systems -

minis, micros and personal computers - than any other word processor.

Come up to Lyrix. Great word processing from the people who know UNIX

and your office automation needs best - SCO.

For the UNIX systems user, it’s a brand new day.

(408)425-7222
TWX: 910-598-4510 SCO SACZ

UNIX business software available from SCO includes the XENIX® Operating System,
Lyrix Word Processing System, Multiplan® Electronic Worksheet, Informix® Relational DBMS,

LEVEL II COBOL™ and uniPATH™ 3270 Mainframe Communications.

®1984 The Santa Cruz Operation, Inc. * The Santa Cruz Operation, Inc., 500 Chestnut Street, P.O. Box 1900, Santa Cruz, CA 95061 • (408) 425-7222

Lyrix is a trademark of The Santa Cruz Operation, Inc. • UNIX is a trademark of AT&T Bell Laboratories
XENIX and Multiplan are registered trademarks of Microsoft Corporation • Informix is a registered trademark of Relational Database Systems, Inc.

LEVEL II COBOL is a trademark of Micro Focus, Ltd. • uniPATH is a trademark of Pathway Design, Inc.

PDP and VAX are trademarks of Digital Equipment Corporation
Circle No. 52 on Inquiry Card

next step done. This solution
extended the ARSB approach,
allowing for more flexible control
and more direct tuning, and thus
now is evolving into a standard
transaction processing architec¬
ture within AT&T.

The name server does provide
a means of control by allowing
administrators to de-queue re¬
quests in priority order. The in¬
formation determining priority
might include expected runtime,
relative importance of transac¬
tions to business needs, and
percentage of original request
completed by previously-visited
processes. Specific long-running
database scans can be throttled
by having only one daemon, re¬
presented by a single entry in the
routing table. The most impor¬
tant long runners may have two
or more entries.

The name server also provides
tuning capabilities. Transaction
priority information can change
over time; for example, queries
could be more critical than up¬
dates most of the time, but be far
less important in rare instances,
such as at the end of the month.
The system administrator can
respond to this by adding and
deleting daemons on the name
server’s tables.

Further, name servers provide
for the real-world occurrence of
system overload. By making note
of a systemwide upper threshold
of work, it can tell a requesting
process, “System busy, please try
again later.”

A degree of recoverability
can also be provided this way.
In at least one case I’m aware
of, redundant daemons were in¬
stalled in the trial site for a new
application. When one crashed,
the other picked up all incoming
work without delay.

The name server concept has
been implemented by various
AT&T projects as device drivers or
as user-level code. Some applica-

Systems providing

quality transaction

processing service

have been built on top

of standard System V

without any kernel

modifications

whatsoever.

tions use a binary request model,
where responses are always sent
directly back to originating pro¬
cesses. Some other applications,
though, use table-driven process
routing. Results from one server
are routed dynamically to either
the next appropriate server or
back to the original client.

INPUT HANDLERS

Experience shows that trans¬
action processing involves an
entire family of input handlers.
Clerks use fixed forms to enter
bread-and-butter transactions
every minute or so from CRTs.
System administrators and more
sophisticated end users interact
with the applications on a more
ad hoc basis. And, there’s often a
non-CRT form of input that must
also be read and processed.

Terminal handlers designed
for clerical users generally do not
bother with pop-up windows, full¬
screen friendly error messages, or
fancy help. The object, after all, is
efficiency, and these users are
so well trained for specific inter¬
actions that fancier features
are superfluous. Handlers de¬
signed with clerical users in mind
thus should refrain from expen¬

sive field-by-field validation com¬
munications with the DBMS
since errors are not common. To
avoid the process-per-terminal
syndrome, a software multiplexor
is commonly preferred.

For the system administrator
or sophisticated end user, though,
fancier forms are appropriate.
Since clerks presumably out¬
number such users, efficiency is
not as critical. Thus, for them,
a process-per-terminal architec¬
ture is often acceptable. The
needs of the sophisticated user
are less predictable than those of
the clerk, so multiple windows,
mouse controls, and elaborate
help also become important.

Even these non-terminal input
handlers and fancy form han¬
dlers must be easily integrated
into the process architecture,
though. Despite their small num¬
bers, sophisticated users could
generate as much transaction
load as clerks requesting monthly
summaries. The controls that
apply to bread-and-butter trans¬
actions thus must also rule ad hoc
work.

A caching mechanism for form
definitions is also valuable if one
is to avoid going to disk for each
form request. One terminal han¬
dling system I’m aware of pro¬
vides a shared-memory buffer
that can be pre-loaded with popu¬
lar form definitions. The segment
of the buffer not taken by pre-
loaded forms is managed by the
system in a least-recently-used
fashion.

A FEW DATABASE ISSUES

Among the absolute necessi¬
ties for DBMS applications used
in transaction processing are
high performance, atomic trans¬
actions, recovery, and concur¬
rency control. These are topics
that are covered extensively in
other literature, including several
of the other articles in this maga¬
zine, so I won’t belabor them

UNIX REVIEW AUGUST 1985 63

TRANSACTION PROCESSING

X.25 FOR UNIX*
Communications

System

• Efficient, error-free data
transmission to multiple
hosts via international
standard X.25, the only
fully certified error-free
public networking system
used world-wide.

• User utilities
• Remote user login
• Remote mail service
• Remote file transfer

• Compatible with widest
number of host
computers.

• Hardware available for
VME, Multibus and
others.

• Previously certified on
TELENET, TYMNET and
UNINET networks.

• Lowest cost per node.

Adax, Inc.
737 Dwight Way

Berkeley, CA 94710
(415) 548-7047

* UNIX is a trademark of Bell Laboratories

Circle No. 23 on Inquiry Card

here. But experience suggests
that there are also other needs
that are not quite so obvious.

The various files involved in a
complex database are not homo¬
geneous. Thus, it is necessary
to vary many parameters file-
by-file, including block size,
hash function, logging strategy,
and buffer-pool management al¬
gorithms. For example, one net¬
work-model DBMS developed and
used widely in AT&T provides
several buffering strategies, se¬
lectable per file at database gen¬
eration time, including:

• a memory-only (i.e. non-disk)
strategy used for temporary
data needed only during the life
of a single transaction.
• a permanent in-memory stra¬
tegy useful for small files that
are frequently accessed.
• a least-recently-used strategy
for traditional files.

Further, the performance that
characterizes complex databases
makes a two-tiered interface to
the DBMS necessary for transac¬
tion processing. One tier should
offer a navigational, record-at-a-
time interface while the other
should provide a non-procedural
interface.

The navigational interface, im¬
plemented via a programming
language, is the one most appro¬
priate for bread-and-butter trans¬
actions. Granted, it takes a week
or two for a programmer using
such an interface to develop a
transaction that does inserts,
modifies, retrieves, and deletes on
a single record, while the same
transaction could be developed in
just a few hours using one of the
forms-oriented application gener¬
ators provided with many com¬
mercial DBMS products. But
trades of bread-and-butter trans¬
action runtime efficiency for re¬
duced development time are not
cost-effective. Since these trans¬
actions can be executed thou¬

sands of times an hour, the
overhead of interrogating the
data dictionary at the time of each
request accumulates quickly.

Application generators and re¬
lated ad hoc query systems are
useful in transaction processing,
though. End user report develop¬
ment and batch program develop¬
ment in the DP shop would be
quite difficult without them. For
reports that are only generated
infrequently, it makes no sense to
trade development time for run¬
time speed. Application genera¬
tors and ad hoc query systems are
also useful in rapid prototyping.

CONCLUSIONS

To do transaction processing
requires two things: a bias toward
performance in data manage¬
ment and forms handling, and a
process architecture amenable to
system administration.

There is much discussion now
in the UNIX system community
about the need to modify the
kernel for transaction process¬
ing. File system and scheduler
enhancements are themes that
are especially hot. There’s no
question but that these features
would be useful. But, while we
wait for them to surface, note that
systems providing quality trans¬
action processing service have
been built on top of standard
System V without any kernel
modifications whatsoever.

Kathy Anderson was a System V
rookie, well experienced in IBM's

IMS, when she was asked to write
her first UNIX system-based appli¬
cation. She has been with AT&T
Bell Laboratories for 12 years, the

last two of which have been spent
supervising the development and
support of a System V transaction
monitor and database management

system for use within AT&T She
currently supervises the Transac¬
tion Systems Group at Bell Labs.M

64 UNIX REVIEW AUGUST 1985

$4399.00
Multi-user UNIX “ System V including:

full operating system + 26MB Winchester
+ 1MB floppy + 1MB RAM + 2 RS232 ports.

EXPANDABLE!

* Price per unit. Volume discounts available. Dealer and Representative inquiries invited.

NEED MORE? An expansion board allows up to 2MB of RAM and |]
eight additional users. Or choose the 45MB hard disk option
and add more storage such as streaming tape drive, another
Winchester or floppy—up to four devices attach to the built-in
SCSI interface. Team the Model 7 with your favorite terminals
and printers.

STANDARD SOFTWARE AVAILABLE: C. Cobol 74, Fortran 77, Pascal.
Basic, Assembler, as well as spreadsheets, word processing, DBMS, etc.

All this and MORE in a light weight, compact (17.5"w x 16.2"d x 4"h)
PORTABLE package from

MECAEATAiQi.
One of “America’s Hot Growth Companies"
(Business Week—May 27, 1985) .

UNIX is a registered trademark of AT&T Bell Latxjratories. Call, Write Of USe COUpOn. 1

M e: 13 /\JJ AJA JSi
CORPORATION X X X

35 Orville Drive. Bohemia. New York 11716
Tel. 516-589-6800 • Telex 14-4659

YES! I’m interested!

□ Please send more information
□ I’m in a hurry—please call
□ Please send information about your 16-user UNIX'" SYSTEM

Name/Title_

Company_

Address_

City/State/Zip _

Telephone_

Circle No. 53 on Inquiry Card

RULES
OF THE GAME

What's in a name?

by Glenn Groenewold

When I was a child, my father
worked for an oil company. One
day he happened to mention that
since his employer had no refin¬
ery in our area, the gasoline we
were buying really came from a
competitor, though it was mar¬
keted under his company’s name.
I was astonished by this revela¬
tion. Hadn’t I been hearing and
seeing advertising in which his
company’s product was pro¬
nounced superior to all compet¬
ing ones?

Patiently, my father explained
that gasoline, basically, is gaso¬
line, and that the equivalent
products from other major com¬
panies were quite interchange¬
able. They were differentiated
chiefly by what 1 have now
learned to recognize as such
things as brand names, logos,
and slogans. These devices are at
the core of modern marketing.

Even after we learn this truth,
many of us continue to permit our
choices to be governed to some
extent by marketing factors irrel¬
evant to the product itself. We do
this each time we select the can
with the familiar label from
among the stacks of canned to¬
matoes in the supermarket. Per¬
haps it’s habit, or maybe we
resort to familiar products simply
because it saves us time and
mental effort.

But what has this to do with

computing? Plenty, some people
say. They point out that the
typical software user usually
doesn’t care how the programs
competing for his or her attention
achieve their ends. Oh, a sophisti¬
cated few may take the trouble to
investigate such things as how
much memory each program re¬
quires, but these discriminating
consumers are a distinct minor¬
ity. Most users, it’s claimed, will
base their selection on the same
sorts of factors that determine
their choices of gasoline or
canned tomatoes.

If this view is correct, product
superiority shrinks in importance
as a determinant of success in
the software marketplace, while
such items as trade names and
logos correspondingly loom larg¬
er. Let’s take a look at how the law
views these marketing devices.

Federal and state laws protect
several categories of proprietary
marketing aids, and some of
these overlap. From our stand¬
point, one of the most important
is trademarks.

A trademark relates to goods,
and computer software is consid¬
ered such. Broadly speaking, a
trademark is something that a
manufacturer or merchant uses
to distinguish his or her goods
from those of others. This can be
a name or words, or it can be
something like a symbol or pic¬
ture. Logos and corporate sym¬
bols therefore can constitute
trademarks.

An important thing to remem¬
ber about trademarks is that they
cannot exist independently of a
product. This means you can’t set
aside a trademark for use with
some product you intend to devel¬
op in the future. The trademark
must be placed on the goods
themselves, or on their contain¬
ers or the “displays connected
with them’’, or on labels affixed
to them. You can’t establish a
trademark just by using it in
advertising, on letterheads, or on
invoices, for example.

Another category of names,
words, symbols, and the like that
can be protected under the law is
service marks. These are almost
exactly like trademarks, except
that they relate to services in-

66 UNIX REVIEW AUGUST 1985

CM I

o.
2 * %

Photographer - Michael Zagans • UNIX is a trademark of Bell Laboratories
• SERIX is a trademark of CMI Corporation • SERIX was developed exclusively
for CMI by COSI. • IBM, Series/1, and EDX are trademarks of International
Business Machines Corporation • UNIFY is a trademark of North American
Technology, Inc. • RM/COBOL is a trademark of Ryan-McFarland Corporation
• ViewComp is a trademark of Unicorp Software, Inc.

lorunmarK company
CMI Corporation

SERIX Marketing
2600 Telegraph
Bloomfield Hills, Ml 48303-2026
(313) 456-0000

TWX: 810-232-1667
Telex: 499-4100 ANS: CMI C0RP. BDHS

Member CDLA Member ASCD

—

...puts your
IBM Series/1® ahead
of the pack!
SERIX is the high performance CMI version of AT&T’s
UNIX™ System V operating system with Berkeley 4.1
enhancements ported to the IBM Series/1
minicomputer.

SERIX transforms your Series/1 into an even more
powerful, flexible, and convenient processor for general
data processing, office automation, communications,
and process control. Its advantages are outstanding:

Reduced software costs
Long term growth path
• Software is highly portable
• Provides access to a large, growing software base

More power from the Series/1
• Optimizing C compiler uses native code features
• All code reentrant
• Dynamic memory allocation without fixed partitions

Increased programmer productivity
• Large set of utilities
• Hierarchical file structure
• Pipes, forks, semaphores, and shared data segments

Other CMI Series/1 software
• RM/COBOL™
• UNIFY™ database management system
• ViewComp™ spreadsheet
• vi visual editor
• EDX™- to -SERIX™ conversion kit

CMI Corporation is a Master Value-added Remarketer
of IBM Series/1 equipment. Leasing and other financial
arrangements are available.
Contact us for further information.

Circle No. 9 on Inquiry Card

U RULES OF THE GAME

stead of goods. In the computing
field, service marks could be
important to someone contract¬
ing to perform systems manage¬
ment, for example.

The third category of interest is
trade names. This simply has to
do with the names under which
people or companies do business.
Trade names do not necessarily
attach to particular goods or ser¬
vices, although they may. Some¬
times a company’s trade name
and its trademark are the same;
two obvious examples are Exxon
and Xerox.

A MIXED BAG

The laws governing protection
of trademarks, service marks,
and trade names are based on
common law principles. (Com¬

mon law was discussed in this
column last December. In brief, it
encompasses the body of “judge
made’’ legal rules that originated
in England several centuries ago.)
Since the laws passed by Con¬
gress don’t cover everything in
this area, it is often necessary to
look to the laws of the various
states—most of them have some
sort of trademark legislation—or
even to common law itself for the
answers to questions that arise.

Federal law, and the laws of
many states as well, provides for
registration of trademarks and
service marks under specified
circumstances. However, federal
statutes do not provide for regis¬
tration of trade names.

Registration of a trademark or
service mark is advantageous be¬

cause it creates a legal presump¬
tion that the mark is valid. This
can be quite useful if it becomes
necessary to go to court to stop
someone from infringing your
mark.

Under federal law, a trademark
must take on what is known as a
secondary meaning in order to
be registrable. It’s difficult to
define this term; among the
trademarks that have successful¬
ly passed the test are Chap Stick
and Holiday Inn. A trademark
can’t merely be descriptive of the
product, nor can it be recogniz¬
able only as the surname of the
manufacturer or seller. (However,
an individual’s name can be
registered as a service mark,
where it has become associated
by the public with a particular
type of service; one example
would be entertainer Johnny
Carson.)

Once a trademark or service
mark has been accepted for regis¬
tration under the federal statute,
the owner of the mark is entitled
to use the symbol ® in conjunc¬
tion with it. It’s against the law to
make use of this symbol in any
other situation.

A number of well-known trade¬
marks and service marks have
not been registered, sometimes
for esoteric legal reasons. In an
attempt to protect these unregis¬
tered marks, the informal prac¬
tice of using the letters “TM” to
identify a trademark and “SM”
to identify a service mark has
evolved. Though these abbrevia¬
tions have no official standing,
they do serve notice on persons
who see the marks that an owner¬
ship right is being asserted.

UNIX is among the trademarks
that have not been registered.
Since it’s particularly important
that the owner of an unregistered
mark be vigilant against the ap¬
propriation of the mark by others,
it’s not surprising that AT&T’s
lawyers have been quite busy

CINIX/XENIX Communications
Available NOW!

Put your
computers on

speaking terms.
*295°°

>*s***'~f"'

TERM. Communications Software
Everyone from the beginning computer user to the expert finds TERM easy to learn and Powerful!o use .Just
plug it in and go! In a few keystrokes you can access a remote database or send a group of files to another

system.
TERM allows your computer to perform efficient, error-free exchange of binary or text files, over phone lines
or hard-wired circuits at speeds of up to 9600 baud. Available options allow you to include or exclude a group
of files for transfer in a single command.

of sessions with remote mainframe and minicompu-

• Modem7 protocol for remote bulletin boards
• Auto-dial/Answer and Hangup supported on

Hayes Smartmodem 300/1200 and compatibles
• Programmable batch file capability
• Unattended file transfer/auto logon
• Translation tables for input and output
• Remote maintenance capability

Term is available NOW on the Altos 586. IBM AT. Tandy Model 16, AT&T 362 and IBM PC/XT. MSDOS and many
others Find out how easy it is to get your UNIX. Xenix, and MSDOS machines all talking together

TERM’S "data capture" feature allows saving transcripts
ters to disk for later editing or printout, if desired

• Pre-installed and ready to run
• Automatic error checking and re-transmission
• Wildcard (V*) file send/receive, capability
• Xon/Xoff. Etx/Ack. Ascii protocols for com¬

munications with non-TERM systems
• Full/half duplex emulation mode for remote

systems

CENTURY
SOFTWARE

We make It easy tor you.

9558 South Pinedale Circle
Sandy, Utah 84092

(801) 943-8386

Circle No. 21 on Inquiry Card

68 UNIX REVIEW AUGUST 1985

writing letters telling people to
watch their use of the UNIX
trademark. The reason that the
company’s licensing agreements
contain specific restrictions on
licensees’ uses of the trademark
should also be apparent.

SELECTING—AND
PROTECTING—A NAME

Registration will be denied any
trademark or service mark that
appears to be in use by someone
else. So it’s important that this be
determined before you launch
your product or service. There are
search companies that will pro¬
vide this investigation—for a fee,
of course—and there are legal
publications that contain alpha¬
betical lists of trademarks that
have been registered or have been
upheld in court decisions. It’s a
good idea to consult your local law
librarian for particulars.

Once you have selected a mark
and have begun to use it, your
work has only begun. It’s vital
that you take action any time you
get wind of someone else using
the same name or symbol to
identify another product or ser¬
vice, or whenever you hear of
someone else using your mark
without indicating so. In either
case, you should write a letter
telling the offenders to “cease
and desist’’ whatever it is they’re
doing. And if they don’t? Well,
then it’s time to see your lawyer.

THE GENERIC PITFALL

In American law, there often
are penalties for succeeding too
well, and this area is no excep¬
tion. If you promote your mark
so efficiently that it becomes a
generic identification of your par¬
ticular type of good or service, you
stand to lose it.

There have been some cele¬
brated debacles of this sort—one
of the earliest casualties was
aspirin—and there also have
been a number of close calls.

Kodak and Coca-Cola (for “Coke”)
have had scares at one time or
another, and many of us will
remember Xerox Corporation’s
institutional advertisements re¬
minding us that its trademark is
not a verb. Just recently the
makers of Toll House cookies
have seen their trademark pass
into the public domain as just
another part of the language.

Perhaps what will serve to save
some creators of software from
becoming the victims of their own
success in promoting trademarks
is simply the ephemeral nature of
the product. By the time a pro¬
gram has become well-enough
known to the public that its
trademark is in danger of becom¬
ing a generic term, it may well

have been rendered obsolete.
Short-lived or not, trademarks

and service marks appear des¬
tined to be a major factor in
determining marketplace success
in the computer industry. While
they do not in any way protect the
product itself, they may be deci¬
sive in dictating how many people
purchase it. That just might make
the marks more important than
all the copyrights, patents, and
trade secrets put together.

Glenn Groenewold is a California
attorney who devotes his time to
computer law. He has served as an

administrative law judge, has been
active in trial and appellate work,
and has argued cases before the
state Supreme Court. ■

BEFORE YOU DO,
ASK THESE QUESTIONS:

!. "Do you have an unparalleled reputation for supporting end-users?"

2. "Have you selected only the best Unix hardware and software to sell?"

3. "Have you been offering timeshared Unix applications packages to hundreds
of users for more than 3 years?"

4. "Have you been using Unix for 10 years?"

IF YOU ASKED BASIS, WE'D SAY YES ... FOUR TIMES!

RASIS
SPECIALISTS IN UNIX COMPUTING

1700 Shattuck Avenue Berkeley, California 94709 415 841 1800
UNIX is a trademark of AT&T Bell Laboratories.

Circle No. 20 on Inquiry Card

UNIX REVIEW AUGUST 1985 69

INDUSTRY
INSIDER

Why the RISC route?

by Mark G. Sobell

“RISC” is a term one hears
often in conversations these
days. The reason is simple: RISC
describes one of the most exciting
directions in current technology.
The acronym stands for Reduced
Instruction Set Computer. An in¬
struction set in a RISC architec¬
ture may consist of 50 or so
simple instructions that can play
the same role previously assigned
to hundreds of complex instruc¬
tions. Most computers available
today, whether mainframe or
micro, rely on the larger instruc¬
tion sets. Because the RISC in¬
struction set is simpler, a ma¬
chine built around it can run
significantly faster than compa¬
rable units using conventional
architectures.

One of the design goals for a
RISC is to reduce the number of
side effects instructions generally
have. No longer is it necessary to
have auto-incrementing, fancy
type addressing, or instructions
that “move a character string
terminated by a null byte from
here to there”. Speed of execution
has been increased as a result
because simpler instructions run
faster. Simpler instructions also
mean cleaner exception process¬
ing: there is less to deal with
when an interrupt occurs. The
RISC approach appears likely to
avoid one of the major problems
confronting chip manufacturers
today: the chore of getting excep¬

tion processing on new, complex
chips to work correctly in all
cases.

Another feature most RISCs
offer is the ability to clean micro¬
code off processor chips. Micro¬
code is CPU chip software that
breaks down complex machine
instructions into a series of
simpler instructions executable
by the chip. Under RISC archi¬
tecture, each instruction is sim¬
ple enough to go directly to
the chip. To compensate, the
smarts that were previously
embedded as microcode can now
be moved to the software (compi-
ler/assembler) level. Because it is
at a lower level, RISC object code
tends to be about 150 percent of
the size of conventional code, but
this bulk is more than compen¬
sated for by increased processor
throughput.

RISC and VLSI (Very Large

Scale Integration, a technology
used in constructing micropro¬
cessors) seem like technologies
meant for each other. The most
complex, expensive, and time-
consuming part of VLSI chip
design is the layout and debug¬
ging of chip logic (the part of the
chip that executes instructions).
The easiest part is the design of
the data area of the chip since
data areas are regular and can be
replicated many times. A RISC
implemented in VLSI technology
offers the advantage of minimiz¬
ing chip logic work while empha¬
sizing data area design.

DIFFERENT STYLES OF RISC

RISC is a generic term that
people have attached many dif¬
ferent meanings to. Many of the
distinctions between different
RISCs come from the information
stored in the data portion of the
VLSI chip.

The IBM/Stanford style RISC
uses the data portion of the VLSI
chip for general-purpose regis¬
ters. An optimizing compiler
must be used to take maximum
advantage of these registers and
increase processor throughput.

The Berkeley style RISC uses
the data portion of the chip for
register windows. These windows
essentially provide for fast access
by keeping the top of the stack,
or several different stacks, on

70 UNIX REVIEW AUGUST 1985

ANNOUNCING THE
2.7 MIPS,68020-BASED

UNIVERSE 32.

BUY BEFORE OCT. 31,
GET A140 MB DISK

In 1982, we leapfrogged
the 16-bit minicomputers
when we introduced the first
68000-based supermicro
with a true 32-bit architec¬
ture. Now, in 1985, that
means we can take full
advantage of the remark¬
able performance of the
Motorola 68020 micropro¬
cessor simply by plugging
it into a 32-bit architecture
that’s already proven in
2,000 Universe installations.

The result is the new
Universe 32: a 2.7 MIPS
powerhouse that

we can deliver now.
To make sure we

deliver more 68020-based
systems in 1985 than any
other company, and to plant
the seeds for long-term
relationships, we’re making
an exceptional offer.

You pay for the basic
Universe 32 Model UV32/
35T (1 Mb RAM, 35 Mb disk,
45 Mb streaming tape, four
serial ports; price $24,900).

You get the Universe
32 with a FREE upgrade to
140 Mb (114 Mb formatted)
disk; FREE upgrade to 4 Mb

RAM; FREE upgrade to
12 serial ports; and FREE
UN/System V Operating
System (derived from UNIX
System V under license
from AT&T). Orders must be
placed by October 31,1985,
for delivery by December 31,
1985. After October 31, this
same system will cost you
$43,700. No quantity limit.
No additional discounts ap¬
ply. Offer available only in
the United States.

For full details call
(617) 626-1000 or write
Charles River Data Systems,

983 Concord Street,
Framingham, MA 01701,
Telex 681-7373 CRDS UW.

GRABBIT!

CHARLES RIVER DMA SYSTEMS
Universe is a trademark of Charles River Data Systems. UNIX is a trademark of AT&T/Bell Laboratories.

Circle No. 50 on Inquiry Card

1J INDUSTRY INSIDER

the chip. The RISC design
employed by Pyramid Techno-
logy Corp. uses register windows
while simultaneously implement¬
ing instructions by way of
microcode.

It is also possible to use the
data area of the VLSI chip for
cache memory (high-speed, im¬
mediately available memory), but
current technology does not allow
you to store enough data on the
chip to make this approach prac¬
tical. Finally, data areas also can
be used for memory management
functions.

All of the big manufacturers
are already at work on RISCs:
HP’s next generation of ma¬
chines, codenamed “Spectrum”,
will be RISCs. Rumor has it that
DEC West is working on two
RISC-based products. IBM is ex¬
pected to announce a RISC work¬
station later this year. And AT&T
is reported to be working on a
RISC project targeted at running
UNIX efficiently.

MIPS COMPUTER SYSTEMS

The acronym mips stands
for Millions of Instructions Per
Second. It is a measure of
raw computer power: how many
instructions can a processor pro¬
cess in a single second? A VAX
11 /780 is rated around 1.0 mips.
A Motorola 68010 comes in at
between 0.5 and 0.6 mips while a
68020 can do 1.0 to 1.5 mips (or
slightly faster in some cases).

MIPS is also the name of a
Silicon Valley startup that just
received $9 million in venture
financing to produce a RISC.
According to John Mashey, one of
the Bell Labs PWB/UNIX team
members who now serves as
Manager of Operating Systems at
MIPS, boards using the first pass
of the MIPS chip will run at
between 3.0 and 5.0 mips, de¬
pending on memory type. That
would assume that the propri¬
etary chip was running at 8 MHz.

Mashey expects the second iter¬
ation of the chip to double that
speed and nearly double the mips
rating. Imagine, if you can, a
single-board, desktop computer
offering the power of eight VAX
780s.

Why else would venture cap¬
italists invest so heavily in a

The smarts that were

previously embedded

as microcode can now

be moved to the

software (compiler/

assembler) level.

company going up against IBM,
AT&T, DEC, and HP? Probably
because, in addition to the tech¬
nology, they looked at the tech¬
nical accomplishments of the
players on MIPS’ side: John Hen-
nessy, former project leader of
the MIPS RISC effort at Stanford
University that produced a RISC-
based microprocessor that
outperformed commercial micro¬
processors by a factor of five.
John Moussouris, the former IBM
liaison to Stanford and Manager
of VLSI System Integration at
IBM’s Thomas J. Watson Re¬
search Center, where he designed
the logic for a very high perfor¬
mance 32-bit RISC-based VLSI
processor. Edward Stritter, chief
architect of the Motorola 68000.
Todd Basche, architect of the
Apollo DN660 workstation. Les
Crudele, architect of Motorola’s
68010 and 68020 processor fam¬
ily. And, of course, John Mashey,
a major contributor to the Pro¬
grammer’s Workbench version of
UNIX at Bell Labs. The list con¬

tinues, including more talent
from IBM, Intel, Zilog, and Data
General.

OVERVIEW OF A RISC SYSTEM

One of the issues facing anyone
developing a RISC is the question
of just what instructions to put on
the chip. “When you minimize
what is on the chip, you’d better
make sure you’ve picked out the
right stuff,” Mashey said. “We
will, of course, run UNIX. We set
up the chip with UNIX in mind,
especially tuning the areas of
memory management and excep¬
tion (interrupt) handling.”

Aside from instruction set con¬
siderations, RISC compilers are
critical to performance. “MIPS
licensed the technology developed
at the Stanford MIPS project and
is using it as a base for further
compiler and optimizer develop¬
ment,” Mashey explained. “We
developed backends for optimiz¬
ation, code generation, and as¬
sembly. We developed front-ends
for Fortran, Pascal, and C. An
optimizing compiler is a good fit
with MIPS-style RISC. It helps
minimize code size, and only a
good global optimizer can take
advantage of the large number of
registers.”

The theoretical goal of a RISC
is to execute one instruction
per basic machine cycle. To help
achieve this goal, the computer
overlaps instruction execution
in what is called an instruction
pipeline. The computer is always
starting work on new instruc¬
tions before completing previous
ones. This technique works
well—until the machine runs
across an instruction that’s de¬
pendent on one that precedes it.
There are several solutions to this
problem, including hardware-im¬
plemented pipeline interlocks
that can stall the computer until
all the necessary instructions
have run to completion. The fol¬
lowing source code and the result-

72 UNIX REVIEW AUGUST 1985

ing assembler code demonstrate
the problem. The examples are
not written in any particular
language; they are simply concep¬
tual representations:

they start execution. A simple
software solution would be to
have the assembler insert do-
nothing instructions (rxops) be¬
fore each of the instructions
marked with asterisks. Although

moves it around so that it will run
most of the time without the need
for rtops. As an example, it might
generate the following code based
on the preceding example:

Problem source code: this solution works, it is ineffi¬ Assembler code modified by

A = B + C cient because it wastes the com¬ the MIPS Pipeline Reorganizer

D = E puter’s time.
Most computers use hardware load word register-! B

Assembler code generated by problem: nops, or interlocks, to avoid the load word register-2, C

software nops that would other¬ * load word register_3, E

load word register..! B wise be required. MIPS, however, add register—! register_2
load word register_2. C has come up with another, more store word register—! A

♦ add register..! register_2 efficient software solution called store word register_3, D
store word register—! A

load word register_3, E

* store word register_3, D

The instructions marked with
asterisks depend on previous
loads being complete by the time

the Pipeline Reorganizer. (As a
matter of fact, another thing
MIPS stands for is “Microproces¬
sor without Interlocked Pipeline
Stages”.) The Reorganizer takes
the assembler code that compil¬
ers or programmers generate and

In this example, the line with
an asterisk is the one that the
Reorganizer moved. By taking the
instruction that loads register—3
and putting it where it otherwise
would have needed a nop, the

WE CAN TEACH YOU INAFEW DAYS
BEEN LEARNING FOR OVER SIXTEEN YEARS.

As the developers of the UNIX™ System, we at AT&T
offer comprehensive training that’s also practical and use¬
ful for your business. Whatever your level of expertise, we
can teach you the specific skills that will have you using
the UNIX System to organize and expand your computing
system for maximum efficiency.

At AT&T each student gets the use of an individual ter¬
minal, teachers that can stay late at night, and a choice
of training centers. You can even center your training right
around your own office.

And because we are continually expanding our courses
to incorporate the developments of UNIX System V, you’re
©1985 AT&T Information Systems.

assured of always getting the most up-to-date information.
Discover the power of UNIX System V at an AT&T train¬

ing course. And develop your UNIX System skills with the
people who develop the UNIX System. Call us today to
reserve your seat or for a free catalog.

1-800-221-1647, Ext. 335

AW
The right choice.

V INDUSTRY INSIDER

Reorganizer got rid of the need for
two nops (the one it replaced with
the load instruction, and the one
that would have otherwise been
required between between the
load register—3 and store regis¬
ters instructions.

The MIPS Reorganizer puts
useful code in 80 to 90 percent of
the delay slots that would other¬
wise be filled with nops. What’s
more, 20 percent of the instruc¬
tions ultimately executed typical¬
ly will be placed in these delay
slots. That means the Reorganiz¬
er provides 20 percent more
throughput than schemes that
insert nops in delay slots.

This example only hints at how
MIPS is moving some of the
intelligence of its computer from

the hardware/microcode arena to
the software side of things. In
addition to allowing the hardware
to be much simpler, this approach
also makes it much easier to
modify software (since, as you
might guess, microcode embed¬
ded on a microprocessor chip is
not easy to modify).

SUMMARY OF RISC

Mashey summed up the major
RISC issues by saying, “Complex¬
ity in a computer is like garbage.
You can’t ignore it, but you can
choose where to put it.

“Prior to RISCs, the trend
in microprocessor architecture
was toward putting as much
intelligence on the microproces¬
sor chip as possible, as in com-

HUNIXH

POWER
100,000 software developers can’t be

wrong*
UNIX is the chosen operating system for

more than 100,000 software developers
because it has the power they need. But

developers aren’t the only people who need

computing power. Any business that wants

multi-users to access the same files at the

same time or wants to simultaneously run

multi-task operations... needs UNIX. At
Dynacomp, we offer UniPlus + ® System V

by UniSoft Corp. For $1495. U.S. dollars

you can run UNIX on the CompuPro®

816/E” ... a powerful 68K
S-100 bus computer system that FROM

COMPUTER SYSTEMS LTD.

maximizes its memory for multi-user/multi-

task operations.
UniPlus + includes all the standard

UNIX System V features PLUS perform¬
ance enhancements found only in

UniPlus +. These features increase the

portability, flexibility, and performance of

UNIX, allowing an affordable operating sys¬

tem for program development, text prepa¬

ration, and general office use.
If it’s time for you to upgrade to UNIX,

call your local Full Service CompuPro Sys¬

tem Center in the United States or call
Dynacomp in Canada for com¬

plete details.

46-6535 Mill Creek Dr.
Mississauga. Ont.
L5N 2M2
(416) 826-8002

*AT&T estimates that there are more than 100,000 people currently developing software under UNIX. Dynacomp serves all of Canada and parts of
Asia and the Pacific Rim. Call us for details and information on our full product line including Plexus. • UNIX is a trademark of Bel
CompuPro is a registered trademark and System 816/E is a trademark of Viasyn Corp. UniPlus + is a registered trademark of Umsoft Corp. AT&T

is a registered trademark of AT&T Information Systems.

Circle No. 28 on Inquiry Card

plex instructions decoded by mi¬
crocode. With the advent of
RISCs, more of the intelligence is
moving into the software, where
it is cheaper and easier to imple¬
ment, debug, and modify.

“And of course the ability to
implement a RISC using VLSI
technology gives you a better
price/performance ratio than
was previously possible. The
price/performance ratio worsens
significantly when you go from
a single chip implementation of
a RISC to an on-board implemen¬
tation to a multiple-board
implementation.’’

Unfortunately, you cannot run
out and buy a MIPS computer just
yet. MIPS Computer Systems does
not plan to start shipping for
another year. And, when it does,
it will be selling to OEMs who will
then build products around the
boards.

For more information on RISC
and VLSI technologies, you might
wish to refer to: “VLSI Proces¬
sor Architecture’’, IEEE Trans¬
actions on Computers, vol. c-
33, no. 12, Dec. 1984, and “Re¬
duced Instruction Set Comput¬
ers’’, Communications of the
ACM, vol. 28, no. 1, Jan. 1985.

If you have an item
appropriate for this column,
you can contact Mr. Sobell at
333 Cobalt Way, Suite 106,
Sunnyvale, CA 94086.

Mark G. Sobell is the author of
the bestselling book, “A Practical
Guide to the UNIX System” (Ben¬
jamin/Cummings, 1984) and the
new “A Practical Guide to UNIX
System V” (Benjamin I Cummings,
1985). He has been working with
UNIX for over five years and
specializes in documentation con¬
sulting, database programming, and

troff typesetting. Mr. Sobell also
writes, lectures, and offers classes in
Advanced Shell Programming and

awk. ■

74 UNIX REVIEW AUGUST 1985

UNIX™ APPLICATION
DEVELOPMENT

TODAY is far more than the
awkward collection of tricks and
tools that are often labelled
“4GL”. TODAY provides a
COMPLETE application
development environment that
will revolutionize the way you
develop and maintain applications.
No UNIX* systems knowledge
is necessary.

Let’s put it frankly: developing
an application is a costly pro¬
position. You’ll need a highly
skilled team of designers, analysts
and programmers, and several
man-years to get things off the
ground. And that’s not to mention
the on-going costs of documenta¬
tion, customization and
maintenance!

TODAY tackles these problems
through a new methodology with
high performance architecture
and a comprehensive range of
features. It’s so quick and easy to
use that TODAY developers can
do the whole job—design,
analysis, development and
documentation.

TODAY provides a compre¬
hensive range of features that
keep application building easy
while optimizing development
resources:
• Powerful recursive logic and

Decision Tables
• Synonyms, Menus, Prompts,

Helps and Defaults for
streamlined definitions

• Screen Painter
• A Report Generator which

includes a Painter

• Push button Self¬
documentation

• Audit Trails
• Source-code security through

run-time only configurations
• Developed Applications

instantly portable across
UNIX* systems

Because definitions are
Dictionary-based, any changes
are easily made in one central
location. A key feature,
“tailoring” lets you alter an
application — perhaps to
customize it for a particular site
or user — without affecting the
original version. If required,
applications can be set up as
Models (Prototypes) and later
enhanced to grow and change
with the business. Tailoring
versions is the perfect solution for
quickly generating multiple
applications based on one Model.

TODAY runs under UNIX* or
UNIX*-compatible operating
systems on super-mini down to
micro business computers using
any of a range of databases. And
if that’s not enough, TODAY is
backed by 14 man-years of
research and development and
the confidence of users who are
breaking time zones in software
development. See us at Interex,
Washington DC, September
8-13, Booth 714, and UNIX
Systems Expo, New York City,
September 18-20, Booth 1303.

bbj Computer Services, Inc.
2946 Scott Blvd.
Santa Clara, CA 95054
Telephone: (408) 727-4464

Circle No. 3 on Inquiry Card

Cure for Backlogs
Induced by 3GLs

in EDP Departments,
Software Houses

& Others

Unix is a trademark of A T & T Bell Laboratories Inc. TODAY Copyright © bbj Computer Services Pty Ltd. Melbourne. Australia, July 1983

DEVIL'S
ADVOCATE

Look for that silver lining

by Stan Kelly-Bootle

Many of you doubtless are
aware of recent hiccups in the
erstwhile exponentially expand¬
ing Computer Industry. You’ll be
cheered to know I refuse to join
those gloomy commentators who
scream “major recession” and
“Armageddon” every time Silicon
Valley shuts down for longish
weekends ranging from five to 15
days. God knows those of us in
the business have earned a
break: the company parking lot
holds an adequate inventory of
workstations, my own UNIX inte¬
grated accounting package (code
named “Larghissimo Ma Non
Troppo”, which is the last re¬
maining musical idiom unregis¬
tered as a software product) is but
a few tweaks from perfection, and
the Giants have a homestand
coming up against the Dodgers.

When reading of plant closures
and staff layoffs, it is tempting to
proclaim that the Last Days of
Tribulation are at hand: “And
whosoever was not found written
in the book of life was cast into
the lake of fire” (Revelation
20:15), where “book of life” is
interpreted as a company annual
report containing a healthy bot¬
tom line.

I, though, prefer the word “hic¬
cup” to “shakeout”. This reflects
my own calm view that what we
are suffering is not the final
judgment, nor even a chronic
sickness. Rather, I maintain that

we are being hypochondriac over
the spurious spikes and annoying
discontinuities starting to appear
on sales and profits graphs. Most
of these graphic anomalies, I say,
are entirely due to the unendear¬
ing quirks of the Macintosh Image
Writer. If you step back far
enough (to the rear of the Welfare
line, for example) and half-close
your eyes, the trend curves be¬
come smoother and less ominous,
the fuzzy pie-charts assume a
more edible disposition, and,
hopefully, those ghastly Macfont
legends disappear altogether.

It is good to see two of the
leading mainframe manufactur¬
ers, Sperry and Burroughs, re¬
sponding to this by closing in on a
merger that might reverse their
ailing fortunes. It will not be easy,
though, to forge a unified product
line from two such disparate

ranges. Indeed, outside of Apple,
it would be difficult to find a pair
of systems of such daunting
incompatibility.

In the widely debated case of
the Rise and Fall of Home Com¬
puting, there is no doubt that
even Invincible Business Ma¬
chines has been disappointed. A
closer inspection reveals that the
root of the problem lies in unjusti¬
fied expectations and crazy fore¬
casting. If you predict a 400
percent growth, and crank up
production accordingly, then a
200 percent growth, miraculous
by any normal standards, be¬
comes abject failure. The abso¬
lute number of home computers
sold is a monument to marketing
ingenuity and human gullability.

I offer one recent snippet to
back this view. Having replaced a
$300 typewriter with a $2000
Word Processor (“The advertise¬
ment said it was ‘affordable’ so
how could I resist?”), the home
computerist is next offered a $95
software package that allows di¬
rect keyboard-to-printer mode!
“Bypass all those time-consum¬
ing diskettes! Forget all those
funny filenames!”

The home computer peddlers
have also overlooked the growing
number of homeless persons (ex¬
cluding those with Ph.Ds in Com¬
puter Science) who, more than
any other segment of the market,
are in need of affordable, system-

76 UNIX REVIEW AUGUST 1985

Why

programming experts

are

choosing

Uni works

productivity tools

Uniworks, Inc., was founded in 1984 to market superior soft¬
ware development tools to professional programmers work¬
ing on UNIX™ and VAX/VMS™, and to support those
products with the industry’s best technical staff.

Our CCA EMACS™ editor environment is fast becoming
an industry standard, and we expect the same from the
Safe C™ family.

Find out how we can help you. Call today or send in one
of the coupons on the following pages.

Read on . . .

UNIX, VAX/VMS, CCA EMACS and Safe C are trademarks respectively of Bell Laboratories, Digital Equip¬
ment Corporation, Computer Corporation of America, and Catalytix Corporation.

U DEVIL'S ADVOCATE

atic, integrated, press-any-key-
when-ready general problem-
solvers.

Pessimists, especially laid-off
pessimists facing eviction and
vehicular repossession, may well
quibble with my carefree analy¬
sis. Unemployment, it seems,
breeds a nasty form of intolerant
cynicism that inhibits any ration¬
al assessment of reality. Indeed, I
meet many who blame Reason
itself for their plight. “My job was
secure until they rationalized
production”, is a common com¬
plaint in Santa Clara County.

Ironically, the very work-free
people whose leisure to ponder
objectively on the deep structure
of the cosmos would be the envy
of any Golden Age Athenian,

Unemployment, it

seems, breeds a nasty

form of intolerant

cynicism.

waste their time casting stones at
the blameless.

Little did the semiconductor
assembly line workers realize
that, as predicted by Ezekiel,
Marx, and Engels, they had been
“tilling their own graves through
the seven years of abundance;
their lamps were left un-oiled,

yea, they trimmed not the wicks
thereon.” They have literally
automated themselves out of a
job, and should expect no sympa¬
thy from the millions who were
earlier victims of automation in
other trades. An industry that
was founded on the proposition
that machines can legally work
for less than minimum rate must
accept the logic of using comput¬
erized computer assembly and
the ALO (Automatic LayOff) pack¬
age, which sends termination
notices and W2s by electronic
mail.

Nowadays, no self-respecting
chip wants to be manhandled
into this world—or even photo¬
graphed alongside germ-ridden
human fingernails. Letting the
chips procreate and assemble in
their own unsullied environment
will certainly improve the yield
and lower the unit cost. Naturally,
there also will be cycles of glut
and shortage—but eventually
the brighter chips will adjust
(they can hardly do worse than
the semiconductor industry).

Programmers should be aware
of similar suicidal trends in auto¬
matic software generation! Rash
attempts to simplify awk are just
the thin end of a dreadful wedge
that could lead to major layoffs.
An unemployed programmer is a
pitiful sight. I have seen a few in
San Jose. They gather round
Automatic Teller Machines, idly
tapping dead keyboards and
dreaming of past glories.

Liverpool-born Stan Kelly-Boo-

tle has been computing, on and off,
at most levels since the pioneering
EDS AC I days in the early 1950s at
Cambridge University. After gradu¬
ating from there in Pure Mathemat¬
ics, he gained the world's first post¬
graduate diploma in Computer

Science. He has authored “The
Devil's DP Dictionary" and co¬
authored “Lem Yerself Scouse" and
“The MC68000 Software Primer". ■

WHEN SERIOUS PROGRAMMING
IS YOUR BUSINESS...
The Concurrent Euclid language
for systems programming provides
the best in efficiency, portability,
reliability, and maintainability
Compilers running on UNIX/VAX,
UNIX/11, VMS/VAX, with code
generated for MC68000,
MC6809, NS32000, 8086/8088
PDP-11, and soon running
on IBM-PC

CONCURRENT EUCLID

Compiler: CSRI Distribution Mgr.
Sandford Fleming Bldg 2002
10 King’s College Road
Toronto, Canada M5S 1A4
Tel: (416) 978-6985

Book:
CONCURRENT EUCLID,
THE UNIX SYSTEM AND TUNIS
Available from:
Addison-Wesley Publishing
Company, Reading, MA. 01867
Tel: (617) 944-3700

CONCURRENT

E U C L 1 D

Circle No. 22 on Inquiry Card

78 UNIX REVIEW AUGUST 1985

“Now I program p
with Power Windows”

Alan R. Feuer
Vice President, Research and Development

Catalytix Corporation

Author: The C Puzzle Book

m

CCA EMACS™...The Most Powerful Editor
Environment Available for UNIX™ and VAX/VMS™

“Programming with CCA EMACS, I can look at two
or more files at once in different windows and then
move text between them"

“POWER WINDOWS” are only part of the reason so
many programmers are using CCA EMACS to make
program editing and system development easier and
faster.

Unprecedented power, speed, functionality, extensi¬
bility, and consistency across systems and on any ter¬
minal are others. Nearly 400 built-in commands let
you do any job with a few keystrokes. And with our
Common Lisp-based extension language, Elisp™, you
can customize CCA EMACS to meet all your specific
program needs.

CCA EMACS has two extensive recovery facilities,
and is supported by a full online documentation pack¬
age designed for beginners and experts alike.

This complete kit of editing tools runs under Berkeley
UNIX (4.1 and 4.2 BSD), Bell UNIX (Sys. Ill and V), and
VAX/VMS. Binary prices range from $380 to $850 for
UNIX to $1900 for VMS.

Uniworks, Inc.
7? A Crowntek Company

Productivity Tools for Programmers

20 William Street • Wellesley, MA 02181

FREE TELEPHONE TRIAL. Call into our system for
a tutorial review and actual product trial for CCA
EMACS or SAFE C™.

For more information, telephone trial instructions, or
to place an order, phone our customer representa¬
tives toll-free at:

800-222-0214
in MA 617-235-2600, or mail this form.

VISA and MASTERCARD phone orders accepted

Please send me information on:
□ CCA EMACS □ The Safe C Development Tools
□ AI Development Tools □ Your complete line of state-of-

the-art programming tools
□ Tell me about your free Telephone Trial Program
□ Please send license forms

Name_

Title ___

Company__

Address___

City, State, Zip _

Phone (_)____

Uniworks, Inc. ursss
20 William Street • Wellesley, MA 02181

UNIX, VAX and VMS are trademarks of Bell Laboratories and Digital Equipment Cor¬
poration, respectively. Safe C is a trademark of Catalytix Corporation. CCA EMACS
and Elisp are trademarks of Computer Corporation of America.

Circle No. 48 on Inquiry Card

c
ADVISOR

File and record locking

by Bill Tuthill

As it stands today, UNIX is not
the best operating system for
running databases. It’s true that
UNIX itself is reliable enough, the
file system is robust enough, and
that at least 4.2BSD is fast
enough. But VAX/VMS, for one,
provides two features that UNIX
does not: system-level facilities
for indexing files, and standard¬
ized file and record locking. Both
of these features are critical to
database applications.

The lack of the first feature—
indexed files—does not pose a
huge problem. Because struc¬
tured access techniques like ISAM (indexed sequen¬
tial access method) and B-trees (balanced binary
trees) are easy to implement on the user level,
database packages can have indexed files without
system help. It was UNIX, in fact, that proved that
operating systems need not impose specific record
structures on files. IBM/CMS, an operating system
mired in useless notions of file structure, is an
example of how it used to be.

So far, so good for UNIX. But then comes the
second problem. File and record locking—unlike
indexed files—is difficult to implement on the user
level. The most primitive locking method is to create
a temporary file that acts as a lock. This is
inelegant, inefficient, and insecure. Without inter¬
process communication, the best alternative is to
create a lock device driver and configure it into the
kernel. As we know, though, UNIX has no standard
technique for interprocess communication.

The bottom line is that UNIX oilers no standard
means for file and record locking. This is not to say
that no standard exists: /usr/group, in fact, has had
a locking standard for several years. But, of the
common versions of UNIX, only 4.2BSD and Xenix

provide file locking. Xenix alone
provides mandatory record lock¬
ing. Many independent UNIX
vendors who don’t deliver Xenix
(like Convergent, Fortune, Onyx,
Plexus, and Zilog) have imple¬
mented the /usr/group standard,
but they have sometimes done so
in subtly incompatible ways.

System programmers often
recognize the importance of file
locking. They know, for instance,
that mail spool files should be
locked during a mail reading
session (so that mail isn’t deliv¬
ered unexpectedly after the spool

file is changed). But programmers outside the
database community generally don’t recognize the
importance of record locking. UNIX kernel hackers
are often hostile to the very notion.

Consider an airline reservation system. While
you are booking a seat on a particular flight, the rec¬
ord for seating on that flight must be locked so that
somebody else doesn’t book the same seat as you do.
Locking the entire database file, though, would be
an uneconomical measure, for it would preclude
other agents from booking different flights at the
same time. Clearly, a multiuser database system
must be able to lock records (or regions) within a file.

If UNIX is ever to be successful at running serious
database systems, it must have system primitives
for file and record locking. This article traces the
locking facilities available on various versions of

UNIX.

THE /usr/group STANDARD

In the spring of 1981, John Bass published a
paper in the Usenix newsletter ;login:, that detailed
the interface and implementation of a lockingO
system call for file and record locking. The proposal

80 UNIX REVIEW AUGUST 1985

It Finds The Subtle Bugs
In My C Programs’

Claude B. Finn
V. P. Software Development

EnMasse Computer Corporation

tutiiiuiuiiiuumimiiiL

The SAFE C™ Family Can Literally Cut Software
Development Time In Half. For UNIX™ and VAX/VMS™
“Evasive bugs that use to eat up days — I'm finding

them in minutes. Stray pointers, errant array indexes,
parameter mismatches, misuse of string functions...I'm
using Safe C automatic error detection to find them
all."

Claude Finn is one of the many C programmers who
have discovered that the Safe C family of software de¬
velopment tools dramatically enhances programmer
productivity and improves software reliability and porta¬
bility. Most Safe C customers have recouped their invest¬
ment in these tools within the first month of active use.
And with the security of Safe C their programmers are
sleeping a lot easier!

The Safe C family includes the Runtime Analyzer,
Dynamic Profiler, Standalone Interpreter, English to C
Translator and C to English Translator.

Uniworks, Inc.
¥? A Crowntek Company

Productivity Tools for Programmers

20 William Street • Wellesley, MA 02181
Circle No. 47 on Inquiry Card

FREE TELEPHONE TRIAL. Call into our system for
a tutorial review and actual product trial for CCA
EMACS™ or SAFE C.

For more information, telephone trial instructions, or
to place an order, phone our customer representa¬
tives toll-free at:

800-222-0214
in MA 617-235-2600, or mail this form.

VISA and MASTERCARD phone orders accepted

Please send me information on:
□ CCA EMACS □ The Safe C Development Tools
□ AI Development Tools □ Your complete line of state-of-

the-art programming tools
□ Tell me about your free Telephone Trial Program
□ Please send license forms

Name_

Title_

Company__

Address_

City, State, Zip__

Phone i_}_

UR885

Uniworks, Inc.
20 William Street - Wellesley, MA 02181

UNIX is a trademark of Bell Laboratories. VAX and VMS are trademarks of Digital Equip¬
ment Corporation. Safe C is a trademark of Catalytix Corporation. CCA EMACS is a
trademark of Computer Corporation of America.

1-1 C ADVISOR

called for mandatory locks. About a year later,
/usr/group published a standard that included a
lockfO system call that had the same parameters
and locking modes. The difference was that the
/usr/group standard allowed for both mandatory

and advisory locks. Advisory locks may be circum¬
vented by programs not using lockfO, while manda¬
tory locks cannot. Files with the setgid bit set are

subject to mandatory locking under this standard.
Mandatory locks are probably not necessary,

though. Both OS/360 and VAX/VMS have survived

for years with advisory locks only, and many large
databases, including airline reservation systems,

have been implemented on these operating systems.

Furthermore, mandatory locks are a potential

security problem. Some user program could lock

/etc/passwd, for instance, and then go to sleep,

causing the entire protection subsystem to hang.
The proposed standard lockfO system call allows

a process to lock sections of a file. Other processes

that attempt to lock that section will either block

until the section becomes unlocked or return an
error value. All locks on a file are removed once the

file is closed, and all locks for a process are removed
when the process terminates. The lockfO call looks

like this:

lockf(fd. mode, length)

int fd. mode:
long length;

The file descriptor fd must come from a success-

ful openl). creatO. pipe(). or dup() system call. The
mode may be F_LOCK to lock a region for exclusive

use. F_TEST to test for other locks, F—TLOCK to
both test and lock, and F-ULOCK to unlock a
region. Actually F-TLOCK is a non-blocking lock: if

a region is locked, it will return an error, rather than

sleep. The third parameter, length, specifies the
number of bytes to lock, measured from the current
position in the file. This can. of course, be changed
with the lseek() system call. Negative values
indicate how far back from the current position to
lock. Even locks past the end of file are possible if

one wishes to protect against appending. If locked
regions overlap, they are combined into a single

region.
The potential for deadlock occurs if a process

controlling a locked resource accesses another
resource locked by a different process and is thus

put to sleep. Because of this, calls to lockfO, readO,
and writef) scan for a deadlock before sleeping on a
locked resource. An error is returned if sleeping on a
locked resource would cause a deadlock. A sleep on
a resource can be interrupted with any signal. Thus,

the alarmO system call may be used to provide a

timeout facility if necessary.
Record locking for a simple ISAM database is

relatively straightforward: lock the data, and lock

the index pointer for the data. But in a B-tree
database, record locking is much harder. Modifying
a record may require shuffling the leaves of the tree.
The safest and easiest thing is to lock the entire B-

tree, but this may not be acceptable in highly

sophisticated applications.

SYSTEM V CONSIDERED LACKING

System V has no mandatory file or record locking

features. System V Release 2 has twice as many—
none. To my knowledge, no UNIX system delivered

The most interesting part of the

new AT&T standard is that locking

can be controlled with the fcntlfJ

system call.

by AT&T has mandatory file or record locking.
ICurrent VAX and 3B2 releases of System V.2 do
have advisory file locking, however. A 3B2
release of V.2 scheduledfor later this year will in¬
clude mandatory record locking.—Editor/

The System V Interface Definition includes the
/usr/group locking standard, for advisory locks only.
Mandatory locking may or may not be included in

future specifications. The programming usage is the
same as in the /usr/group standard, as are the
modes F_LOCK. F—TEST, F—TLOCK, and

F-ULOCK.
The most interesting part of the new AT&T

standard is that locking can be controlled with the
fcntlO system call. This affords a distinction
between read locks and write locks, something not
present in the /usr/group standard. The file descrip¬
tor passed to lockfO must have O—WRONLY or
O-RDWR permission in order to establish a lock.

Locks may also be established with the F_SETLK
or F-SETLKW command tofcntlO; the distinction is
that F-SETLKW waits, whereas F_SETLK is non-
blocking. Either command takes the arguments

F_RDLCK and F-WRLCK to lock, and F-UNLCK to
unlock. A read lock (F_RDLCK) prevents other

82 UNIX REVIEW AUGUST 1985

T G O™

Use Tango to:

• Connect IBM and
compatible PC's running
DOS to UNIX systems.

• Offload processing to
PC's.

• Control data and
applications on remote
PC’s.

• Distribute processing
between UNIX and PC’s.

Buy Tango for:

• Execution of DOS
programs on the PC
under UNIX control.

• Simple elegant file
transfer under error
correcting protocol.

• DEC, IBM, and
Tektronix (graphics)
terminal emulation.

Tango utilizes a standard
RS-232 serial port on
the PC and connects to
the UNIX computer via
a modem or direct
connection.

COSI

313 N. First St.
Ann Arbor, Michigan
48103
(313) 665-8778
Telex: 466568

Tango is a trademark of COSI.
UNIX is a trademark of Bell
Laboratories.

Circle No. 6 on Inquiry Card

w C ADVISOR

processes from write-locking the protected area.

More than one read lock may exist for a given region
at any given time. The file descriptor in question
must have been opened with read access. A write
lock (F_WRLCK) prevents any process from read¬

locking or write-locking the protected area. Only one

write lock may exist for a given segment of a file at
any one time. The file descriptor in question must
have been opened with write access.

In a production database system, it is best to
place a read lock on a record during browsing. If the
record gets modified, the read lock can be upgraded
to a write lock (if no other read locks exist), the rec¬

ord can be quickly updated, and the write lock can
be removed. The system must arbitrate race

conditions, as when two processes are both waiting

for a write lock.

FILE LOCKING ON BERKELEY UNIX

Recent releases of Berkeley UNIX (4.2 and the
forthcoming 4.3) contain the Jlock() system call,

which allows processes to place advisory locks on

files. Since advisory locks are not enforced by the

operating system, Jlock() is useful primarily for
cooperating processes that have already agreed
upon a locking protocol. When a process attempts to
lock a file already locked by another process, Jlock()
blocks until the first process releases the lock. If
called with the LOCK_NB (noblock) option,

however, Jlock() will simply return the error
EWOULDBLOCK rather than block when it encoun¬

ters a file that is already locked. Both exclusive and
shared locks are available. At any one time, a file
may have only one exclusive lock, but multiple
shared locks are permitted. This call establishes an
exclusive lock, and will block until the lock in effect

is released:

if ftlock(fd. LOCK—EX) < 0)
perror("fatal error: flock");

The following call, on the other hand, establishes
a shared lock. It will block if the file has an exclusive
lock, but not if there are multiple shared locks:

if (flockffd. LOCK_EX) < 0)
perror("fatal error: flock");

Another option is represented by the following
call, which establishes an exclusive, non-blocking

lock. It can be used when one can try again later,

rather than wait for a lock to be released:

if (flock(fd. LOCK_EXiLOCK—NB) < 0)
perror("try again later: flock");

Any of the above locks can be released by this

call:

(void)flock(fd. LOCKUJN):

In all of these examples, the file descriptor fd is

obtained from a system call such as opeti(). The
Jlock() system call returns -1 if the file descriptor is
invalid, or if it does not refer to a file.

Some Berkeley UNIX commands that establish
locks are tip (when writing a log of the call), dump
(when recording information about incremental

John Bass should be commended

for his work on file and record

locking.

dumps), and some versions of mail (for locking the

spool file during mail browsing).
The main problem with the flockQ facility is that

it lacks record locking. Database applications could
perform record locking by using a socket-based lock
manager, but this would be slow compared to record

locking done by the kernel.

FILE AND RECORD LOCKING ON XENIX

Xenix release 2.0 includes the lockingl) system
call for performing both file and record locking. This
facility is similar to the original 1981 lockingf)
proposal by John Bass, except that it provides read
locks in addition to read/write locks. As in the
original proposal, all locks are mandatory rather

than advisory.
The programmer supplies as parameters the file

descriptor, the locking request, and the number of

bytes to lock:

locking(fd. mode, length)

int fd. mode;
long length:

The file descriptor is obtained from a successful
system call such as opert(). The number of bytes to
lock is specified from the current position in the file,
which can of course be changed with the lseek()
system call. The available modes are LK—LOCK
to lock a region, LK_NBLCK to lock a region with¬
out blocking, LK_RLCK to read-lock a region,
LK—NBRLCK to read-lock a region without blocking,

and LK_UNLCK to remove any of the above locks.
Both LK_LOCK and LK—RLCK wait until the lock is

84 UNIX REVIEW AUGUST 1985

to ax the VAX

The Firebreathers continue on the cutting
edge of high performance computers.

The most powerful line of computer sys¬
tems made. Gould
PowerNodes'" and
CONCEPT/32s*

Any way you
slice it they beat
the VAX'"

Our main¬
frame PN9000 and
CONCEPT 32/97
are up to twice as fast as the VAX 8600.

And even though the mid-range
PN6000 and CONCEPT 32/67 are 30-50%
smaller than the VAX 11/780, they're still up
to three times more powerful.

More power for a slice of the price.
Despite their superior power, our mid¬

range models cost 40% less than the VAX
11/780. Our mainframes cost about 30%
less than the new VAX 8600. The bottom
line is more power for less money.

Operating environments that are a cut
above the rest.

There's also a choice of system soft¬
ware to consider. Gould’s unique UTX/32®
is the first operating system to combine
UNIX* SystemVwith Berkeley BSD 4.2. So
it allows you to access virtually any com¬
mand format you want whenever you want.

And in real-time environments, Gould’s
MPX/32’” operating system offers perfor¬
mance that’s unmatched in the industry,
as well.

Delivery that’s right on the mark.
Unlike the VAX §600, that has up

to a 12 month wait tor delivery, when you

order either a Gould PowerNode or a
CONCEPT/32 system, they’ll be shipped
within 90 days ARO.

You can also be sure with Gould you're
getting a computer that’s backed by years
of experience - the kind of experience we
used to develop the first 32-bit real-time
computer.

If you need more information or just
have a few questions, give us a call at
1-800-327-9716.

See for yourself why VAX no longer
cuts it. Go with a Gould computer and ax
the VAX.
CONCEPT/32 and UTX/32 are registered trademarks and PowerNode
and MPX/32 are trademarks ol Gould Inc. VAX is a trademark of Digital
Equipment Corp. UNIX is a trademark of AT&T Bell Labs

■> GOULD
Electronics

SL 5 £

Circle No. 58 on Inquiry Card

U C ADVISOR

available: LK_NBLCK and LK—NBRLCK return an

error instead.
Portions of a file may be locked against both

reading and writing, or just against writing. Pro¬
cesses that attempt to read or write a file region
locked against reading and writing by another
process (using LK_LOCK or LK_NBLCK mode) will
sleep until that region has been released. Processes
that attempt to write to a file region locked against
writing by another process (using LK—RLCK or
LK—NBRLCK mode) will sleep until that region has

been released.
It was helpful for Microsoft to implement read-

locks, but the facility that Xenix provides conforms
neither with the /usr/group standard, nor with the
System V interface definition. This may change in

Xenix 5.0, however.

CONCLUSION

John Bass should be commended for his work on
file and record locking. Without him, there would be

no standard today. His public-domain locking
facility has not only been published as part of the

/usr/group standard, but has been included by
various far-sighted vendors. Even some people
within AT&T have finally seen the light, and have
included locking primitives in the System V
Interface Definition, as well as an intelligent
interface with fcntl().

As time goes by, I believe Bass’ locking standard

will become widely accepted. The 4.2BSD locking
facility will die out simply because it does not
provide adequate functionality (it has no record
locking). Perhaps in a few years, programmers will

be able to write database systems with the certain
knowledge that file and record locking will be
available on all UNIX systems. Until then, we will

have to limp along with a standard that is only
partially standard.

Bill Tuthill was a leading UNIX and C consultant at
UC Berkeley for four years prior to becoming a member
of the technical staff at Sun Microsystems. He enjoys a
solid reputation in the UNIX community earned as

part of the Berkeley team that enhanced Version 7 (4.0,

4.1, and 4.2BSD). ■

UPGRADE YOUR I TOWER POWER
UNIX SYSTEMS

TALK TO YOUR COMPUTER
IN PLAIN ENGLISH

The Bell Screen Editor™ uses plain English
commands for all your Unix* and MS-DOS' word
processing needs. Perfect for programming and
Informix*, too. Over 10,000 installed.

NEW! 80 MEGABYTE AT&T UNIX PC
7300* AND AT&T 3B2'

Our B40 System™ and B80 Systems™ upgrade
your Unix PC or 3B2 to 40 or 80 Megabyte hard
disk capacity. Easy to install in minutes.

UNIFY* USERS REJOICE
The DataView System™ provides a spread-sheet
like interface to any UNIFY application. Multiple
records, sorted data, and much more.

Bell Technologies Call today for

415-792-3646 / PO Box 8323 our special
Fremont, California 94537 demo offer!

Circle No. 30 on Inquiry Card

Give your Tower more Power!

up to 1.2 gigabytes of disk and tape storage:

• removable disk

• fixed media disk

• disk and tape

SHA Computers, Inc.
RD#3, Tait Rd., Box 51
Saratoga Springs, NY
12866

(518) 587-5886

Personal Secretary™ word processor
profit»makerJM integrated accounting system

DIBOLIX™ DIBOL™ for UNIX™

Traoe’na'ks Tower. NCR Corporation, DIBOUX. C DIBOL Ventures, UNIX.
AT&T DIBOL, Digital Equipment Corporation, Personal Secretary.
Finished Software, profit maker, SHA Computers. Inc.

Circle No. 29 on Inquiry Card

86 UNIX REVIEW AUGUST 1985

THE UNIX
GLOSSARY

Database terminology

by Steve Rosenthal

Note: Only those meanings
applicable to databases and
UNIX have been included in
this listing.

activity ratio—the proportion of
a file that has been read, updated,
or written during a given period.
The optimal method of storing a
large amount of data can vary in
accordance with the expected ac¬
tivity ratio.

add—to introduce a new record

into a database. In some systems,
additions are classified as ap¬
pends (at the end of the file) or as
inserts (within the file). The addi¬
tion of data to a field in an existing
record is known as an update.

ad hoc—said of queries to a
database management system
(DBMS) made directly by a user
rather than as part of a program.
Most of the more sophisticated
DBMS packages for UNIX support

an ad hoc query facility that
typically uses a format resem¬
bling IBM’s SQL (Structured Que¬
ry Language). This feature allows

non-programmers to get quick

answers to simple questions.

aggregate—to derive a value,
such as a count or sum, based on
the contents of many records.

applications development sys¬
tem—a software package intend¬
ed to help with the development of

applications programs, generally
by using descriptions of needed
inputs, outputs, and their rela¬
tions. This saves the user from
having to specify each step, as
would be necessary with proce¬
dural languages. Some applica¬
tions development systems for
UNIX function as complete user
shells, providing a user interface

that substitutes for the normal
UNIX environment. Compared to
program generators, applications
development systems are gener¬

ally more sophisticated, but usu¬
ally produce code that requires a
more extensive runtime support

package. Applications develop¬
ment systems are often called
“application generators”.

atomic—an indivisible opera¬
tion, that must either be run to

completion or aborted altogether.
Transaction updating is a typical
atomic operation.

attached processor—a supple¬

mentary processing unit used to
speed up the processing of spe¬

cialized types of data. For exam¬
ple, arithmetic calculations or
database searches can be facili¬
tated by the use of an attached
processor. When the processor is
a chip or a board, the term co¬
processor is commonly used.

attribute—an item of informa¬
tion entered into a single field (or
a “single cell” in a row-and-
column database). In relational
databases, columns are often re¬
ferred to as “attributes”.

audit trail—the recording of
each update, addition, or deletion
of records such that a database
can be reconstructed later by
referring to logs.

browser—a program or mode
allowing the user to look through
a database on screen without
using a set of procedural display
commands. Most browsers also
allow users to move through data
using simple keystrokes to indi¬

cate direction. Many will let users
change data by overwriting old
data.

B-tree—shortened term for “bal¬
anced tree”, a way of organizing

UNIX REVIEW AUGUST 1985 87

II GLOSSARY

pointers to information in data¬

bases that allows quick retrieval
of any single specified record. So-

called “B + ” or “B*” trees allow
records to be efficiently retrieved
in sequential order. Many data¬

bases designed for UNIX use B +
trees for their indices, and some

arrange their records using this

kind of structure in preference to
the UNIX file system.

cardinality—in formal des¬
criptions of databases, “cardinal¬
ity” refers to the number of tuples
in a table or set. Translated into

everyday language, this means
the number of records in a data¬

base or the number of rows in a
table.

CODASYL —an acronym (pro¬
nounced Code-a-sill) for Confer¬
ence on Data Systems and Lan¬
guages, a computer industry
organization set up by the US
Department of Defense in the late
1950s. The most famous product
of the group is the language

COBOL, but it also developed a set
of standards for database struc¬

tures that have been used with

other languages as well.

column—in databases that use a
table-like organization, a “col¬
umn” is a record component that
contains similar information in
each record (and thus is repre¬
sented in a single column when

the data is displayed as a table). In
more traditional database termi¬
nology, “field” is an analogous
term.

concurrency control—in a dis¬
tributed system, “concurrency
control” is used to ensure that
simultaneously input events do
not interfere with each other or
lead to the processing of incom¬
plete records and files. The usual
method for exercising this control
is for the system to finish the
processing of one transaction be¬
fore allowing another user to

access the same record or file.

database—in the most general
sense, “database” refers to any
clearly identified collection of

data. Some people differentiate
between a “data base” (two
words), meaning an underlying
collection of data in the real

world, and a “database” (single

word), meaning a coherent collec¬
tion of data stored in a computer
system. When taken as the latter,

the word makes particular refer¬
ence to data organized so that
various programs can access and
update it.

database management systems
(DBMS)—a program or set of
programs providing a framework
for creating, editing, and main¬

taining collections of data for use
by different programs. DBMS sys¬
tems serve as an interface be¬
tween programs and data and
may also include a query facility
for making individual (ad hoc)
requests for information from the
database and a reporting facility
for producing formatted listings
of selected data.

data dictionary—the “data dic¬

tionary”, in most complex data¬
bases, is a list of defined fields
and record formats. It is used as a

guide or constraint to ensure that
all programs using the database
treat the data consistently.

decompose—to change a request
couched in non-procedural lan¬
guage to a required procedural
form. This is one of the principal
tasks of an ad hoc query system.

delete—to logically remove infor¬
mation (usually a record) from a
database. Often, deleted data is
marked but not physically re¬
moved until the file is copied or
consolidated.

field—in data entry, a “field” is
an area in which a certain type of
information is to be placed. For
example, a database program
might reserve a 10-character field

for area code and telephone num¬
ber. Conceptually, fields are simi¬
lar to the blanks to be filled in on

a pre-printed form. When shown
on a screen, fields are generally

marked by flags indicating a
beginning and an end, by tempo¬

rary fill-in characters (such as

periods), or by differences in color
or brightness.

file—a group of records treated
as an overall unit by the operating
system. In some types of data¬

bases, each file is made up
of structurally identical records,
while other types allow variations
in a single file.

get—to retrieve records from a

database, or at least to mark them
for further processing. A get
operation is often followed by a

definition of the desired group of
information.

hash—to make a pointer or index
by applying a transformation to
the characters or values compris¬
ing a key or record. Hashing
provides a very fast way of index¬
ing large lists or databases, but it
requires complex programming to
deal with collisions (when the
hash function produces identical
results for different input values)

and to fold long keys into short
hash values. Many UNIX utilities
use hash functions to create
pointers to their internal tables.

hierarchical—a model for orga¬
nizing data that uses “owner¬
ship” as its basic conceptual unit.
Each item “belongs” to a higher
item, and is accessed through
that higher item. This model is
used on most CODASYL-type da¬
tabases, including most of those
written in the COBOL language.
The UNIX file system can also
be thought of as a hierarchical

database.

indexed sequential access meth¬
od—a method of organizing files
that is most popular on older

magnetic tape-based systems. It

88 UNIX REVIEW AUGUST 1985

depends on keeping the file in

overall order, but creates overflow
areas and indices for changes
that don’t fit in place. Periodical¬

ly, the entire file must be reorga¬
nized. Some of the older UNIX

utilities use ISAM, but most use a
direct access method better suit¬

ed to disk storage.

insert—to add records to a file,
particularly in a mode that allows
additions to the middle of a file (as
opposed to an append operation,
which only allows additions at

the end of a file).

ISAM—an acronym (pronounced

“eye-sam”) for Indexed Sequen¬

tial Access Method. This arrange¬
ment of data was pioneered by
IBM when magnetic tape was the

principal means of storing data,

but it’s only used rarely now by

small systems that have disks. In
effect, ISAM keeps data in a basic
order, making an exception list of

out-of-order items as data is add¬
ed, deleted, or changed. Periodi¬
cally, the file must be cleaned and
rewritten to eliminate the excep¬

tion list.

join —in general, to combine two
databases (or when used as a
noun, “join” refers to the result of
that combination). In particular,
as applied to relational data¬
bases, “join” means the creation
of a new file containing all the
records of a second file referred to
by yet another file. One example
would be a shipping list file
produced by joining an orders file

with an inventory file.

key—the part of a record that
will be used as a identifier when
records are indexed or sorted. For
example, in the telephone book,
the key is each subscriber’s
name. Some databases allow du¬
plicate keys (where the key is the
same for two or more records), but
other systems require that each

key be unique.

log—a list of transaction records
entered since a certain check¬
point. Good practice calls for each
transaction to be logged before
requesting an update or oper¬
ation. With a log, data can be
reconstructed following a system
failure by using records dating

from an appropriate checkpoint

to resubmit all transactions.

modify—to change the content

New from Image Network!

Documenter’s Workbench
for laserprinters and typesetters.

DWB is troff, eqn, tbl, and pic
interfaced to raster printing devices.

Our existing XROFF product allows DWB
to work with the following systems and printers:

• System V
• Berkeley 4.2
• VAXIUltrix
• IBM/PC MS/DOS
• Eunice
• Uni Plus +

• DEC LNOIs, LN03
• APS-5 typesetter
• Compugraphic 8400

• System III
• V7
• VAX/VMS
• Amdahl/UTS
• Xenix
• UNOS

• Xerox 2700, 3700
• Xerox 8700, 9700

Use DWB with a laser printer to make high quality
documents or to make proof copies before typesetting.

Call or write to tell us your printing requirements!

Image Network, (408)746-3754,
424 Palmetto Drive, Sunnyvale, CA, 94086-6760

'Documenter’s Workbench is a trademark of AT&T Bell Laboratories.

This ad was typeset using DW B.

Q-CALC

A superior spreadsheet on UNIX*

As powerful as Lotus 1-2-3*

• large spreadsheet
• many business functions
• complete GRAPHICS package
• translates 1-2-3 models into

Q-CALC
• already ported to: VAX, Callan,

Fortune, Nixdorf, Cyb, Plexus,
Codata, Cadmus, Masscomp,
SUN, etc.

Available since Jan. ’84
For more information write/call

Quality Software Products
348 S. Clark Drive

Beverly Hills, CA 90211
213-659-1560

'Lotus 1-2-3 is a trademark of Lotus Development
Corp. UNIX is a trademark of Bell Labs.

Circle No. 33 on Inquiry Card Circle No. 34 on Inquiry Card

UNIX REVIEW AUGUST 1985 89

U GLOSSARY

of a database or the structure of a

record or file. All databases for
UNIX support modification of da¬
tabase content, but only some
will allow record structures to be

modified once data has been

entered.

non-procedural—said of sys¬
tems and languages where users

specify what they want done
instead of how to carry it out. For
example, in a database, a non¬
procedural query might ask for all
records with values between cer¬

tain limits, while the equivalent
procedural statements would ac¬
tually specify how to sort and

select the database to find those
records.

project—to make a selection

FRANZ
THE FIRST NAME IN

LISP

Franz LISP from Franz
Inc. is currently available
under UNIX and VMS.
Now with Flavors and
Common LISP compatibil¬
ity. Franz sets the stan¬
dard for LISP.

Franz Inc.
1141 Harbor Bay Parkway

Alameda, California 94501
(415) 769-5656

UNIX is a trademark of Bell Labs. VMS is a
trademark of Digital Equipment Corporation.

■ - ■ - ■

Circle No. 31 on Inquiry Card

of possible fields from database

records for further processing.
The fields may be selected from
all records in the database or
from a more restricted set.

QBE —short for “Query By Ex¬

ample”, a non-procedural meth¬
od of specifying record selection.
See query by example for details.

query by example—to find or

select records in a database by
specifying acceptable ranges of
values in a sample record instead

of programming the steps needed
to make that selection. This fea¬

ture, which allows database que¬

ries to be made by those who
are not expert programmers,
has been steadily moving down

-\

UNIX
JOBS

REGISTRY
National registry of candi¬
dates and jobs in the Unix
field. Please give us a call;
send a resume; or request a
free Resume Workbook &
Career Planner. We are a
professional employment
firm managed by graduate
engineers.

800-231-5920
P.O. Box 19949, Dept. UR

Houston, TX 77224
713-496-6100

0 Scientific Placement, Inc.

'Unix is a trademark of Bell Labs

Circle No. 32 on Inquiry Card

from large mainframe systems to

even modest-sized UNIX database
management systems.

query language—a computer
language that acts as an interface

between user and database to
facilitate the retrieval of informa¬

tion. Most query languages are
procedural, based on a set of
commands (often called verbs)
and qualifiers. The trend, howev¬
er, is toward “natural language”

interfaces that allow queries

posed in forms more akin to
ordinary speech.

record—a collection of entries in

a database filed under a single
key or identifier. Files are com¬
posed of records, which in turn
are composed of fields. Each rec¬
ord usually represents a single
instance of the type of informa¬
tion collected in the database,
such as all information related to
a single part number or the wages
of a single employee. In the rela¬

tional database model, a record is
equivalent to a single row in a
table. UNIX itself treats files as
streams of characters, so the
database program must handle
the task of grouping information
into logical records.

record-locking—the exclusion
of users from accessing (or, some¬
times, just writing to) a record
that another user is already up¬

dating. This prevents the corrup¬
tion of data that might occur if
each user could make changes
without taking stock of changes
made to the same data by other
users. Record-locking affects only
those records in use, allowing
other users to access other parts
of the file. AT&T has added rec¬
ord-locking to System V Release
2, but previous versions of UNIX
lacked a standard record-locking
call.

relation—a table (row-and-col-

umn structure) with attributes
forming the columns, and tuples

90 UNIX REVIEW AUGUST 1985

(records) forming the rows. Each
relation represents a linking of
data values with the attributes or

fields in which they fall. Note that
usage is moving towards calling a
combination of two tables a “rela¬
tion”. In formal terminology, this
would be known as a “join”.

relational—in the strict sense,
“relational” refers to databases
that are conceptually organized
in a row-and-column format,

with the data defined as the
relation of a part of a record (the
row) to a category or field (the
column). In recent use, however,
the term has been taken to refer
to a database that can join or
display two or more files based on
a shared field or category.

remove—to take values or
records out of a database. Often,
“removal” implies actual phys¬
ical erasure or reorganization,
while “deletion” may signify
that material was only logically
eliminated or marked for later

removal.

replace—to change values in a

database record or field to new
ones. Often, replace implies the
complete change of an entire
record or field, while a modify or
update operation may change
only a portion.

report—when referring to data¬
bases and their use, “report”
refers to a collection of data

gathered, formatted, and output
according to user request. Getting
a formatted, focused report out of
a database is often much more
difficult than collecting the data
in the first place.

report writer—a program or sub¬
system that produces reports

from a database. Most early re¬
port writers required users to
specify selection and formatting
steps in extensive detail, but the
trend in many recent packages
has been to offer a menu-driven

interface.

restrict—to select certain re¬
cords from a database, either for
display or further processing.

restructure—to change the orga¬
nization of a database, particular¬
ly the layout or makeup of fields
in each record. Only some data¬
bases allow restructuring once
data has been entered.

retrieve—to get records from
a database. Some people use
“retrieve” as a synonym for the
general operation of reading re¬
cords back from storage, while for
others it implies a selection of

certain records.

row—in the relational database
model, the values that print out
on a horizontal line when a file
(relation) is shown in table form.
This includes all the values in the
table associated with a single key,
and is also termed a “tuple” or
“record”.

select—in a sort or transfer oper¬

ation, “select” refers to efforts to
isolate all the records meeting a

specified criteria. A select always
implies restriction of the set,
and sometimes it also implies
retrieval.

SQL —short for Structured Query
Language, an approach to ex¬
tracting information from data¬
bases pioneered by IBM.

table—a file or relation logic¬
ally organized in row-and-column
form. Each record (row or tuple) is

identical in format, which makes
for easier processing and joining
with other tables.

transaction—an update, addi¬
tion or deletion of a record in a

database. Transactions are usu¬
ally treated as atomic (they either

must be completed or backed out
completely). Systems designed for
transactions are optimized to
handle many changes.

tuple—the more formal name for
a row in a relation (table). It is a
shortened form of “n-tuple” (tak¬
en from the realm of mathe¬
matics) that is used to refer to
multiple attributes (fields or col¬
umns) associated with each row.

update—to change information
in a database without resorting to
removing records, making new
ones, or creating copies. Updates
can be done in real-time (transac¬
tion-based), or in batches (batch

mode).

Comments, questions, or cor¬
rections? Please send them to
Rosenthal's UNIX Glossary, Box
9291, Berkeley, CA 94709.

Steve Rosenthal is a lexicogra¬
pher and writer whose work appears
regularly in six personal computer
magazines. m

A OTIC A TVT 2221 Blacksmith Dr., Wheaton, IL
/\I\ 1 (312) 260-1315

SEMINARS AVAILABLE:
UNIX™ Overview & Fundamentals. ...$400
C Programming. ...$500
Text Formatting. ...$300
Shell Programming. ...$300
Software Development in UNIX. ...$500
LAN, Multiplan™, dBASE III™.

Public Seminars available in Chicagoland or your area (5 persons minimum).

Customized Seminars also available.

‘UNIX is a trademark of Bell Laboratories
Multiplan is a trademark of Microsoft Corp.

dBASE III is a trademark of Ashton-Tate

Circle No. 45 on Inquiry Card

UNIX REVIEW AUGUST 1985 91

RECENT
RELEASES

PLEXUS FILLS OUT LINE
WITH P/20

In an effort to offer a low-end

microcomputer to system integra¬
tors and customers with several
end users, Plexus Computers,
Inc., has introduced the P/20.
Part of the P/15 family, the P/20 is

said to offer more networking
options than the P/15, and yet
offer a lower price and compara¬
ble performance to the P/35. This
new model will compete with
such machines as the SCR Mini-
taur and AT&T 3B2.

The base package for the P/20
features a 24 MB hard disk, a 1
MB floppy, .5 MB of memory, and

accommodates eight users. This
package operates under a Plexus
port of UNIX System V, Release 2;
the basic offering contains the
utilities needed to get the system
going: an editor, uucp, cu, and
tape and backup facilities, ac¬
cording to Lynn Macey, Plexus’

National Analyst Manager. He

also said the P/20 is fully licensed
for a complete port if a VAR

wishes to install it. The machine
incorporates dual MC68010 mi¬
croprocessors that run at 10 MHz
with no wait states, and SCSI and
Multibus interfaces. The Multi¬
bus permits the addition of a
controller board to provide up to
16 serial ports. The base package
is priced at $10,950. A fully

outfitted P/20, with 152 MB of
hard disk and 2 MB of floppy,
carries a price of $20,300.

Plexus Computers, Inc., 3833
N. First St., San Jose, CA 95134,
408/943-2248.

Circle No. 36 on Inquiry Card

92 UNIX REVIEW AUGUST 1985

Plexus Computers adds to its
model line with the P/20.

ALTOS: DO I HEAR 20?
DO I HEAR 30?

For those who don’t live in
a Spanish-influenced region of
the country, “Altos” translated

means “tall”, or “the tall ones”.
The San Jose-based computer

firm bearing the name may have
had this in mind when plotting its
new marketing strategy, for it
appears to be setting its sights
high. Altos is intensifying its
marketing efforts around two
new products, the 2086 and
much-anticipated 3068.

The Altos 2086 supermicro is a
high-end addition to the com¬
pany’s Intel CPU-based product
family. Rather than compete with
the 586 and 986, which support
up to five and nine users respec¬
tively, the 2086 is sold by Altos as
a complement or upgrade to these
machines, as it supports up to 20

users (hence the model name).
The price reflects this upgrade
($19,990 for the base configura¬

tion, compared to $7990 for the

586 and $ 11,990 for the 986), but
the 2086’s specs are worthy
of consideration: based on a 16/

32-bit Intel 80286 running at 8

MHz, the box comes with 2 MB of
RAM, an 80 MB hard disk, a 1.2
MB floppy, a 60 MB streaming
tape unit, and an Altos III termi¬
nal. Hard disks can be upgraded
to 189 MB (formatted) in 63
MB increments. The 2086 runs
Xenix 3.0.

The Altos 3068 has the same
modular design characteristics
and many of the same compo¬
nents as the 2086, but it is a
notably distinct machine—for
two reasons. First, the 2086 was
designed as a dealer product, to be
marketed through Altos distribu¬
tors, though Altos hopes for inter¬
est from major accounts as well;
the 3068, on the other hand, is

designed as an OEM product.
The second distinction is espe¬

cially noteworthy: the 3068 is a
mass-produced supermicro based
on the 32-bit MC68020 micro¬
processor. Announced last March
and available as of last month,
the 3068 comes with a base
package featuring 1 MB of RAM, a
20 MB hard disk, and a 1.2 MB
floppy supporting up to 10 users.
When properly outfitted, howev¬

er, this machine will support up
to 30 users. The design includes
eight board slots with four avail¬
able for custom configuration.
RAM can be expanded to 16 MB in
1, 2, or 4 MB increments; hard
disks can be upgraded to 240 MB

(unformatted) in 20, 60, or 80 MB
increments.

Other available features in¬
clude a streaming magnetic tape
unit, with up to 60 MB of backup
storage; an operating system (the
3068 runs System V) supporting
demand-paged virtual memory
with 1 K page size; and various
software products, including the
Altos Office Manager (which in¬
cludes a windowing package) and
a database management package
based on Unify.

Altos emphasizes that while
the 3068 capably functions as a
standalone system, it can be
joined with other Altos multiuser
systems via the Altos WorkNet
local-area network, and with
mainframes via 3270 Bisynch,
SNA, X.25, and 3780 communi¬
cations options. With Altos PC
Path attached to WorkNet, the

3068 can also act as a file server
and communications gateway for
personal computer users.

Philon, Inc., of New York City,
has been selected as one of the
suppliers of compilers for the
3068. BASIC-C, BASIC-M, CO¬
BOL, and C .compilers are pres¬
ently available, and Fortran, Pas¬
cal, and RPG compilers will be
ready later this year.

The base configuration price
for the Altos 3068 is approxi¬
mately $7000 in OEM quantities.

Altos Computer Systems, 2641
Orchard Pkwy., San Jose, CA
95134, 408/946-6700.

Circle No. 35 on Inquiry Card

SWEET TALK THROUGH
THE (RCA) MAIL

SofTest, Inc., has signed a
contract with RCA Service Corpo¬

ration for SofTest’s new com¬
munication product. Sweet Talk.
RCA will be using Sweet Talk to
access the RCA Mail network and
provide access to RCA Mail for its
customers.

Sweet Talk is a UNIX-based
product that can link the user
with on-line database services
and remote computers, as well as
electronic bulletin boards and
mailing services. It claims to
bring to UNIX all of the features of
various popular MS-DOS prod¬
ucts such as CROSSTALK and
SmartCom, as well as some other
benefits not available to PC users;
Sweet Talk is also compatible
with these two products. Since it
is UNIX-based, Sweet Talk can be
shared and used concurrently by
several people on the same com¬
puter. It is now available on Altos
computers and Radio Shack 16Bs

ACUITY® business software
is compatible with any budget,

and all these systems:
AT&T 3B’s
Motorola
Charles River Data
Sun Microsystems
All Unix based micros
All Unix “look-alikes"

Plexus
Convergent
Cromemco
Altos
Harris/VOS
VAX/Ultrix

Gould
Sperry

Momentum
Dual

Harris/Unix
VAX/VMS

Serving general accounting, wholesale, distribution,
manufacturing and project/job costing applications on
over 30 different machines, ACUITY allows you to
select from individual modules to build a fully inte¬
grated software system specifically for your needs.

Accounts Payable » Accounts Receivable
General Ledger • Fixed Assets • Payroll
Customer Order Processing • Inventory

Purchasing/Receiving • Project Management
MRP • Master Scheduling • BOMP

Project Scheduling • Labor Projections
Work Breakdown Structure

For more detailed information, call 619/474-6745.

coGniTion
225 West 30th Street, National City, California 92050

Circle No. 37 on Inquiry Card

57 VU 555""

Version 3d0 Available Now!

The Reliable High Performance APL
for UNIX* Systems

Dyalog APL is fast!
Version 3.0 is up to 10 times faster than previous versions!

Dyalog APL is functional!
Nested Arrays
Full Screen Editor
Full Screen Data Manager
Event Trapping
Interface to all UNIX* Facilities
Optional Graphics

Dylalog APL is reliable!
Dyalog APL has been in commercial use for over two years
and is available NOW for most UNIX* Systems so call or
write today.

MIPS Software Development, INC
31555 W. 14 Mile Rd. #104
Farmington Hills, MI 48018
(313) 855-3552

' Improvtmenu ire a function of »y»tem and uta^e
• UNIX i* a trademark of AT&T Bell Laboratory

Circle No. 38 on Inquiry Card

UNIX REVIEW AUGUST 1985 93

RECENT RELEASES

and 6000s, and SofTest plans to
port Sweet Talk to the AT&T and
IBM lines of UNIX machines,
among others. Single copies of
Sweet Talk sell for $300.

SofTest, Inc., 555 Goffle Rd.,
Ridgewood, NJ 07450, 201/447-
3901.

Circle No. 39 on Inquiry Card

ANALOG RUNNING IN
APOLLO'S DOMAIN

Analog Design Tools, Inc., has
announced it will develop a ver¬
sion of its analog circuit design
software to run on all of Apollo
Computer’s DOMAIN 32-bit fam¬
ily of engineering workstations.
Originally designed for the Sun
workstation, Analog’s computer-
aided engineering software also
has been produced in a recently-
released version for Daisy Sys¬
tems, as well as others to be
announced later.

Under the terms of a Software
Supplier Agreement, Analog will
provide Apollo with training in
the operation of its Analog Work¬
bench software, along with sup¬
port and assistance for demon¬
strating the software on Apollo
workstations. Apollo in turn will
provide Analog with technical
support and will inform Apollo
customers of the availability of
Analog’s software for its systems.

Analog Design Tools, Inc., 800
Menlo Ave., Suite 200, Menlo
Park, CA 94025, 415/328-0780.

Circle No. 40 on Inquiry Card

FORTRAN LIBRARY FOR
HP 9000

As evidence of the continuing
penetration of UNIX into the sci¬
entific/engineering market, wit¬
ness the now-available collection
of over 500 Fortran subroutines
that can be run on Hewlett-
Packard Series 9000 computers.
The IMSL Library contains tested
programs for a range of mathe¬
matical and statistical applica¬

tions that can be selected by a
programmer rather than devel¬
oped from scratch. The Library
has been available for some time
on HP 1000 and 3000 Series
machines, and is now compatible
with the 9000 Series (Models 520,
530, and 540) running a Fortran
77 compiler under HP’s version of
UNIX, HP-UX.

An annual supported license is
priced at $1200 for the initial
year, and is renewable at $1000.
IMSL also offers a reduced price to
educational institutions and dis¬
counts on multiple purchases.

IMSL Sales Division, The NBC
Building, 7500 Bellaire Blvd.,
Houston, TX 77036, 1/800/222-
IMSL; in Texas, 713/772-1927.

Circle No. 41 on Inquiry Card

ALIS: THROUGH THE
UTEK-GLASS

A contractual agreement has
been reached between Applix,
Inc., and Tektronix, Inc., whereby
Tektronix will market Alis, the
Applix office software system.
Alis will be run under UTEK, the
Tektronix version of UNIX, on the
Tektronix 6000 family of 32-bit
workstations. Applix will port
Alis to the Tektronix 6130 proces¬
sor and provide support for the
6000 family and 4107 terminals.

UTEK is a 4.2BSD-based port
of UNIX, combining 4.2 with
aspects of System V, Release 2. It
also offers Tektronix enhance¬
ments, according to Tektronix
Product Support Manager Bruce
Harris, including a virtual mem¬
ory system faster than 4.2’s, and
an added distributed file system.
The operating system is support¬
able on workstations and comes
with packaged learning sessions.
Though it is “large UNIX’’, Tek¬
tronix claims the advantage of
compatibility with both 4.2 and
V.2.

Applications of the Alis system
include multifont word process¬

ing, drawing, spreadsheet, busi¬
ness graphics, electronic mail,
and network-based information
sharing. The package works
at combining graphics-based
and integrated PC applications
with communications-based of¬
fice automation systems. Applix
has previously announced agree¬
ments with Convergent Technol¬
ogies and Computer Sciences
Corporation.

Applix, Inc., 112 Turnpike Rd.,
Westboro, MA 01581, 617/870-
0300.

Circle No. 42 on Inquiry Card

IN-HOUSE PUBLISHING
FROM ETP

ETP Systems, Inc., has pro¬
duced an in-house publishing
system providing laser printer
typography for UNIX computer
users. A turnkey system that
includes an Imagen 300 dot/inch,
8 page/minute (12 and 24 page/
minute also available), Canon-
powered laser printer, is distin¬
guished from other publishing
systems by ETP-developed “usr/
tools’’ software. This software
package contains an enhanced
device independent troff (with a
focus on menu-driven processing
of troff commands), several mac¬
ro formatting packages, a laser
printer driver, a choice of up to 33
fonts, and a font magnification
program (with a capacity for siz¬
ing typefaces from 6 to 72 points).

ETP Systems markets its pub¬
lishing package through com¬
puter manufacturers and OEMs,
and provides a product support
package that includes descriptive
data sheets, sample output, and a
manual set. The in-house system,
with three fonts, is approximately
$13,000; additional fonts are
available at $175 per face.

ETP Systems, 10150 SW Nim¬
bus Ave., Suite E-2, Portland, OR
97223, 503/639-4024.

Circle No. 43 on Inquiry Card

94 UNIX REVIEW AUGUST 1985

Only Sperry can make the
following four statements.

Our PC runs the XENIX™
system, as well as MS-DOS™.

Our 4 new microcomputers
run the UNIX system.

Our new minicomputer runs
the UNIX system.

Our Series 1100 mainframes
run the UNIX system.

All of which means there is
a great deal we can do for you.

For instance, our family of
computers based on UNIX
systems has incredible trans¬
portability for all your software.

And being able to accom¬
modate from two to hundreds
of users, it’s impossible to out¬
grow our hardware.

Of course, this linking of all
your computer systems can add
measurably to your productivity.

And a fast way to find out

more is to get a copy of our
Sperry Information kit. For
yours, or to arrange a demon¬
stration at one of our
Productivity Centers, call
1-800-547-8362.
‘UNIX is a trademark of AT&T Bell Laboratories
XENIX and MS-DOS are trademarks of Microsoft
Corporation
©Sperry Corporation 1985.

Introducing an idea
that makes obsolescence obsolete.

The UNIX operating system
from PC to mainframe.

Circle No. 8 on Inquiry Card

DATABASE OVERVIEW

DATABASE OVERVIEW
Continued from Page 33

or exists simultaneously in two accounts. Transac¬
tions can hide this anomaly from other users, and
can ensure that if the system crashes at this point,

the database will be restored to a consistent state.
This requires a more complex commit operation,
and deadlocks become even more common and
more difficult to resolve (since many objects—not
just one—may have been updated).

Audit Trails. It has been said that lawyers and
bookkeepers will inherit the earth. To assuage our
future owners, databases containing information of
legal significance should include the ability to
maintain audit trails—logs of all changes (and
possibly accesses) made to a database.

If care is taken in designing the log, audit trails

(sometimes also called transaction logs) can be

used to “roll back” a database to a previous state,
that is, to undo changes that have been made. This
can be necessary for recovery from system crashes
or deadlocks.

Backup/Recovery.Databases should be dumped
periodically. A database dump is equivalent to a
“level zero” dump on UNIX. In addition, a dump of

the transaction log (see above) can be considered
equivalent to an “incremental dump” on UNIX; a log
can be used to roll forward a database and redo the
incremental changes made since the last database
dump.

An important issue is whether the database can
be backed up while it is live (available for users), or if
it must be in a quiescent state. This is important be¬

cause some applications simply cannot afford to be
offline for the several hours it can take to back up a
large database.

UNIX-style dumps are not normally acceptable.
For example, if one record in a 10 million-record file

changes, a UNIX incremental dump will save the
entire file, while a clever database backup will save
only the changed record.

Systems supporting very large databases should
allow dumps of subsections of the database.

Protection. Often it is necessary to restrict
access to data. For example, “managers can read
the salaries of the people who work for them; the
personnel department can read all salaries; all
other access to salaries is denied”. This can be
relatively low resolution (perhaps access could be
limited on a per-file basis—as on UNIX) or very high
resolution (whereby individual fields and/or individ¬
ual records are protected).

Data Dictionary. If you have a particularly
complex database structure, you may want to have a
data dictionary available. This feature allows you to
ask for information about the data itself. For

example, you might need to know the attributes
from different relations that can be correlated
against one another.

Integrity Constraints. Some systems give you
the ability to place additional constraints on the

data. For example, one could specify that “salaries

must be positive” or “every employee must be in a
department”.

Non-Traditional Data Types. Typically, data¬

base systems have concentrated on fairly ordinary
data, such as integers, character strings, and the
like. As the use of databases expands, they are being
extended to handle new types, such as text,
graphics, and “experts” (a time expert, for example,
would understand “yesterday”, “three weeks from

last Tuesday”, and other time and date-oriented
constructs).

As superminicomputers have steadily become
more available, the availability of comparably sized

database management systems also has increased.
These systems are often relational, which is to say
they operate on data in simple tables rather than in
less flexible data structures, such as hierarchies or
networks.

All database management systems offer certain
basic operations: retrieval, insertion, deletion, and
modification. Larger systems may also provide
aggregation and the ability to correlate tables
against one another.

User interfaces represent the most obvious
differences between database management systems
today. Many kinds of interfaces are available,
ranging from complex programmer interfaces to
simple facilities that can be used by relative
novices.

Internally, database management systems may
have many important features. Since these are
usually less obvious than the differences between
interfaces, special care should be taken to evaluate

them carefully. Every feature has a cost, but failure
to include an important feature can make the
difference between a pleasant interaction with data
and a sentence to live out a technological
nightmare.

Eric Allman has spent many years working on almost
all aspects of database management systems. Currently,
he works at Britton Lee developing interfaces to
database machines. He previously spent several years at
UC Berkeley, working on the development of the
INGRES system. Between database responsibilities he
has worked on a variety of other projects, including text
preparation, electronic mail, and computer games. ■

Material presented in this article was first presented at the Spring
1984 European UNIX Users’ Group Conference. UNIX REVIEW
expresses its gratitude to the EUUG.

96 UNIX REVIEW AUGUST 1985

SETTING THE STANDARD FOR TOMORROW ■■■■

tion of the time
opment tools. h
turn to the mo

RUBIX™ is a high performance database manage¬
ment system (DBMS) for the entire range of com¬
puters—from single user microcomputers to large
mainframes. It offers the ideal solution to the micro¬
mainframe compatibility issue. RUBIX is a true rela¬
tional DBMS which is a fully integrated part of UNIX,
not an afterthought. The friendly English-like user
language and relational programming language (Q)
allow complex Applications to be developed in a frac-

associated with conventional devel-
nd where desired, the developer can
st complete Host Language DBMS

Interface now available. Extensions to the relational
model, including dated relations and updated views,

he most powerful DBMS available
today. RUBIX ife the only DBMS under UNIX which
supports simultaneous access to multiple databases

ions across databases. And, on net¬
work computeris, the databases can even reside on
different machines.

Data manipulati

■ The RUBIX i
■ Shell scripts

UNIX comm
■ Queries pro

preter

on may be performed by:

interactive relation editors
containing interactive RUBIX and

inds
cessed interpretively by the Q inter-

■ Compiled queries linked with C functions
■ C programs invoking RUBIX macros and functions

PREFIX™ was designed to provide nonprogrammers
a convenient and easy-to-use interface to RUBIX.
Through PREFIX, even nonprogrammers can gener¬
ate applications software for online transaction pro¬
cessing environments.

PREFIX features include:

■ Interactive full-screen forms generation facility

■ User-friendly menu interface

■ Online context sensitive help

■ Comprehensive data entry, editing and validation

■ Automatic retrieval from other relations and data¬
bases

■ Multiple search facilities

■ C language interface

RUBIX/PREFIX offers an efficient method for creat¬
ing applications tailored to specific needs. The result¬
ing systems are quickly learned and reliably operated
by clerical personnel with little or no computer
background.

When productivity is the key, the choice is RUBIX.

INFOSYSTEMS TECHNOLOGY, INC.
6301 Ivy Lane / Greenbelt, MD 20770 / (301) 345-7800

Circle No. 5 on Inquiry Card

MAKING A MATCH

Use the Power
of Your Computer

. . . to automatically look up city,

state and county information based
on zip code. Table of 48,000 zips al¬

lows significant savings on data

entry, error corrections and file

maintenance. This set of floppy

disks, including easy instructions,

is just $149. Most popular 5'A" and

8" formats are available. Hard disk

required. Call or write for free infor¬

mation.

DCC Data Service
1990 M Street, N.W., Suite 610

Washington, D.C. 20036

202-452-1419

Circle No. 27 on Inquiry Card

Tree Shell
A Graphic Visual

Shell for Unix/
Xenix End-Users and

Experts Alike!

Dealer inquiries welcomed.

M

"A Higher Form of Software"

24000 Telegraph Road
Southfield, Ml 48034

(313) 352-2345
TELEX: 386581 COGITATE USA

Circle No. 26 on Inquiry Card

98 UNIX REVIEW AUGUST 1985

MAKING A MATCH
Continued from Page 41

piping data between front-end
and backend may argue against
the two-process architecture
on small machines. Computers
that accommodate many users,
though, can benefit in several
ways from the front-end/backend
approach.

First of all, UNIX runs all its
programs as re-entrant code,
which is to say that even when
two or more users are running the
same program, the code segment
is still only loaded once. However,
each user gets a private data
segment. Thus, when all users on
a system run the same query
language, the code only occupies
physical memory once. However,
if each user runs different data¬
base programs, code segments for
each program will have to be
loaded. Chances are, though, that
80 percent of the code is redun¬
dant across all the segments
since each contains the same
DBMS retrieval code. Thus, if a
single backend process were han¬
dling all calls from user pro¬
cesses, the code for these differ¬
ent programs could be shared to a
large extent.

A problem with the two-pro¬
cess architecture, though, is that
it makes it impossible for a pro¬
cess to talk to several other
processes. Strictly speaking, each
of the backends looks like a
separate process to UNIX; they all
simply see to it that the system
only loads code once. Several
different data segments still exist
for a backend process, which
really only wants one—meaning
that buffered data needs to be
stored redundantly. This is bad
both because it is inefficient and
because it can cause “concur¬
rency control” problems of its
own.

The secret to turning this prob¬
lem into an advantage is the use
of shared memory (standardized

in System V). Shared memory
allows a backend process to look
like several processes to the UNIX
process table, but to still “share”
data areas with other invocations
of itself. In essence, the backend
process becomes one beast with
several concurrent pipes to re¬
questing processes. This is the
architecture required for DBMS
efficiency. The more users there
are, the more important this ar¬
chitecture becomes. Pipe over¬
head thus is more than paid for.

CONCLUSION

Throughout the history of
DBMS products on UNIX, the
advent of standards has always
helped. This has been particular¬
ly true in the case of locking and
shared memory. Other interest¬
ing standardization efforts are
also going to have a major impact
on UNIX. For example, European
UNIX suppliers have developed a
group called X/OPEN to standard¬
ize on a subset of the System V
Interface Definition and make a
number of “commercial exten¬
sions”, such as C-ISAM indexed
file manipulation calls.

It is interesting that the com¬
mercial extensions have focused
on typical data processing needs.
This trend places UNIX and
DBMS directly at the heart
of commercial data processing.
UNIX clearly has gone through a
tough evolution, but it has adap¬
ted well and finally come of age.

Roger J. Sippl is President of
Relational Database Systems, Inc.
(soon to move from Palo Alto to
Menlo Park, CA). As such, he has
helped pioneer the UNIX DBMS
market with such products as Infor¬
mix and the recently released Infor-
mix-SQL, which includes embedded
SQL interfaces for C and COBOL.

Mr. Sippl holds a degree in Com¬
puter Science from UC Berkeley,
and is a founder and former board
member of /usr/group. ■

Connect your IBM, Apple, Tandy,
Zenith, A.T.&T., Hewlett-Packard,
Televideo, NCR, IMS, SUN, or other
DOS or UNIX-based system to
another micro or to your mainframe
with CLEO Software.

Now you can connect your PC LAN, too!

For details call: 1(800) 233-CLEO
In Illinois 1(815) 397-8110

CLEO and 3780Plus are registered trademarks of CLEO Software.
IBM is a registered trademark of International Business Machines Corporation: Apple is a registered trademark
of Apple Computer: UNIX Is a registered trademark of A.T.&T. Technologies, Inc. Circle No. 55 on Inquiry Card

CLEO Software
a division of Phone 1, Inc.
1639 North Alpine Road
Rockford, IL 61107
TELEX 703639

WEINBERGER INTERVIEW

WEINBERGER
Continued from Page 49

WEINBERGER: Either in the ker¬
nel or with interprocess com¬
munication, depending on how

fast you want to go. There’s more

to the United Airlines system
than that. The United Airlines
system has, oh, 10,000 terminals
or so. A lot of them are what
are called multidrop terminals.
They’re all connected by way of
Bisync, or HDLC, or something,
and they look a bit like 3270s.

Even if we had a database
management system we were
happy with, one of the things I
don’t have is the knowledge need¬
ed to deal with these communica¬

tion networks. That’s a really
important part of a database
system. It’s partly a reliability
thing. You don’t know that your
transaction is complete until you
get a message saying so. That

means you have to log the mes¬

sages. You have to control every¬
thing. There is no point in doing
something or, more precisely, fail¬
ing to do something if it is not
recorded. If you enter something,
but the line goes away, you may
deserve to know whether or not
that transaction was completed.

REVIEW: It may even be worth
money.

WEINBERGER: That’s conceiv¬
able.

REVIEW: Do you think that's a
communications issue?

WEINBERGER: No, in principle it
has to be handled wherever the
database is. I have two separate
objects that have to be backed
up—to be logged. I have the
database itself, and I have com¬
munications messages. To get
both halves of that consistent,
there’s got to be some controlling
entity that handles both. So the
logical control for both has to be
in one place. It doesn’t have to be

centralized in any sense, but
logically, there can be only one
coordinating entity that handles
the sending of messages and the
assigning of tasks.

REVIEW: That sounds hard to

do with an add-on package.

WEINBERGER: It’s certainly dif¬
ficult to do right with an add-on

package. You could probably
come very close. But, yes, it is
very hard to do. When my trans¬

action runs, it does two things: it

writes a disk block, and it sends a

message to the terminal. If you’re
not careful, you can send them in
the wrong order, and then what¬

ever wasn’t sent first may not
happen if there’s a failure.

REVIEW: Is the logging oj com¬
munication needed so that if
a line is dropped. you can give

the person the message again
whenever they come back?

WEINBERGER: Yes. You may de¬
sire to know that a message never
got through. The other thing you
have to watch out for in the
database literature is that it deals
mostly with transaction process¬
ing stuff. At least that’s where the
interesting theoretical questions
typically have been. Another set
of questions, though, considers
what you can do if you do not have
transactions and you’re not re¬
trieving little records. These

questions surface when you con¬
sider relational retrieval systems.
What if my objects are programs
or pictures?

Pictures can be small, but
maps are big. Of course, records
can also be very large. What if the
database is enormous? The cen¬
sus is an example of an enormous
database. You probably have a
billion bytes or more of data. I
don’t think anybody’s very good
at taking data from the census
and simply putting it into a
database system—not without
writing a lot of special code first.

What’s more, there are only cer¬
tain questions you can ask eco¬

nomically for a very large data¬
base. If I have a 10,000-byte

database or whatever—you can
look at every character and think
hard. But if you have a giant

database, that’s just not possible.
That’s a problem with databases
that exists no matter what sys¬

tem you implement your work on.
As your view of the world

changes—and as your custom¬
ers’ view of the world changes—
your database will get weirder

and weirder. One of the argu¬
ments in favor of doing things in a

relational way is that you can do it
more easily than you would be
able to with a CODASYL model,

one of those arrangements like a
hierarchical database that’s been
wired into concrete.

There are also many philo¬
sophical questions—take the Bell
Lab phone book database, for
instance. Each employee has a

unique payroll account number,
so there is no way you can ask the
database system reliably to see if
somebody is listed in your data¬
base twice if the records have
different keys, the system be¬
lieves the people are different.
That’s because they can't be in
the database twice.

One of the things that happens
when people start talking about
networks is that they have this

idea that you want to be able to
find things in the network. People
tend to get carried away with the
notion of using a database system
as a name server that will allow
them to look up nicknames and
stuff. The fundamental problem
is the difficulty in distinguishing
among all the people named “Da¬
vid S. Johnson’’. You’re probably
going to have a lot of them. But
you don't want to find all the
people named Dave at Bell Labs
during your search for just one of
them.

REVIEW: You would get mostly

100 UNIX REVIEW AUGUST 1985

AST Eliminates
XENIX'S Biggest limitation

AST's complete ra
of advanced techn
enhancement soli|r
let you tap the fu
and efficiency of]
More Users With
FourPort/XN.™ A
eight extra XENIX
including standa
to IBM^PC-ATs in
multi-tasking ope

This low-cost s
to four individua
serial ports on a si
AST adapter board:
PC for a total of e\
users, including I
Supplied XENIX
is a snap too. Sim,]
two single boards
installation script
ing our XENIX dr:
kernal.
More Memory a:
Advantage!™ am [
Here's two expansi
take full advantage
performance bus
ory capabilities.

ipge
lology
itions
1 power
CENIX.
AST-

lC d up to
compatible ports—

ird cables and drivers-
XENIX multi-user,

fating environments.
:olution provides up
illy addressable RS-232
ingle card. Install two

s into your "console"
even simultaneous

3M's three.
Drivers. Installation
tply insert one or

And use our "driver
to automate link-

vers to your XENIX

nd I/O With AST's
RAMvantage!™
on cards that let you
ofthePC-AT's high

and extended mem-
ijjse our RAMvantage!

add up to 3.0 Mb of
parity checked memory.
Or select Advantage!
for 3.0 Mb of memory
and several popular
I/O functions.

Both take only a single
slot, and offer AST's built-in Split
Memory Addressing™ which rounds
out base memory to its maximum
640 Kb and simultaneously extends
memory at 1 Mb and above.
Higher Performance With AST's
Colossus™ Disk Subsystem. Expand
the AT's mass storage capacity with
this 74 Mb Winchester disk drive and
streaming tape cartridge backup. You
get the highest performance available-
30 millisecond average access time
with direct disk to tape data transfer
at 5 Mb per minute.

Whatever your needs, AST's commit¬
ment to PC-AT enhancement provides
the total XENIX solution. For more
information call our Customer Infor¬
mation Center (714) 863-1333.
AST Research, Inc., 2121 Alton Avenue,
Irvine, California 92714. TWX: 753699
ASTR UR.

Circle

AST-FourPort/XN, Advantage!, RAMvantage!, Split Memory Addressing

and Colossus trademarks of AST Research, Inc. IBM registered trademark

of International Business Machines Corp. XENIX trademark of Microsoft

AST-FourPort/XN

• Adds up to eight XENIX- • XENIX Drivers Supplied
compatible user ports • Data rate individually
• Includes expansion cable programmable to 9600
to four standard DB25 Baud
connectors

RAMvantage!

• Memory expansion - • Split Memory Address
128 Kb to 3.0 Mb in a ing rounds out AT's system
single slot memory to 640K and con¬
• User upgradeable with tinues expansion at I Mb
64K or 256K memory • Supports AT's full pro¬
chips gram processing speed

Advantage!

• All the memory • Up to 2 serial ports
expansion features • Parallel printer port
of RAMvantage! • Optional gtme port

Colossus

• 74 Mb disk capacity • 60 Mb streaming tape
formatted, expandable cartridge backup
to 370 Mb • Utilizes SCSI
• 30 msec average disk technology
access time • XENIX drivers available

Fourth Qiiarter 1985

/IST
R€S€RRCH INC.

No. 54 on Inquiry Card

WEINBERGER INTERVIEW

useless information?

WEINBERGER: Well, I do not
know if it’s useless information,
but it’s pretty hard, given a list of
full real names, to disambiguate
people. Get out the phone book to
convince yourself of that. Rela¬
tional databases can be trouble¬
some—even as ideal objects.

REVIEW: What about the rela¬
tional model attracts you?

WEINBERGER: I find the rela¬
tional model fairly simple to un¬
derstand. The hierarchical model
sounds like the UNIX system
directory tree, but it’s not; it’s
nothing at all like the UNIX
directory. All the layers are of
different types.

The point is to keep things just
as simple as possible—perhaps
even a little simpler so as to better
restrain you from the tendency to
make things complicated.

REVIEW: The question of UNIX
suitability for databases then
comes down to whether it's
unsuitable or not. Considering
that it's being used for data¬
base solutions today, it's clearly
not unsuitable. It's just that the
database solutions aren't being
built into UNIX.

WEINBERGER: That’s right.

REVIEW: So you don't need to
abandon UNIX whenever you
face a problem that requires a
database.

WEINBERGER: Right. There’s a
graduate student at Princeton
who is building a file system that
you can think of as a database file
system. When you read and write
using it, locking is handled for
you automatically. The system
knows about transactions, and it
has a UNIX way of dealing with
these things. A lot of the conven¬
tional trappings of transaction
processing simply aren’t there.
It’s all handled for you whether
you ask for it or not.

102 UNIX REVIEW AUGUST 1985

REVIEW: How is he implement¬
ing it?

WEINBERGER: It looks like a
piece of a disk, but there’s a hook
built in that notices when reads
and writes occur, and handles
locking and logging automatic¬
ally. He can tell what each pro¬
cess is doing since he’s in the
kernel. The scheme does not use
/usr/group standard record lock¬
ing, but the record locking works
just the same. It’s all done secret¬
ly for you, or to you, depending
on how you’ve asked for it. The
goal was not to implement a
database system under UNIX. It
was to get fairly realistic mea¬
surements comparing different
forms of concurrency control and
crash recovery.

The concurrency information
is essentially the core of the
research. There’s a lot of talk
about that. I think the consensus
is that the most efficient means
for doing concurrency control and
crash recovery happens to be the
way that big commercial systems
use rather than all the other
fancy techniques people have
thought up. Not everybody agrees,
of course.

REVIEW: Do you believe that
there's only one solution?

WEINBERGER: I don’t think that
there’s only one solution, but I
think at the moment there’s a
clear-cut first choice if you’re
trying to build a fairly high perfor¬
mance database system. You use
locking instead of optimistic con¬
currency control, and you use
logging instead of shadow paging
or whatever the other alterna¬
tives are.

REVIEW: Doesn't shadow pag¬
ing buy you a bit in terms of
recovery?

WEINBERGER: Yes, shadow pag¬
ing makes a lot of aspects of
recovery easier. I had a package
that did some kind of shadow

paging in index trees, and we
never had to roll back a transac¬
tion. It was wonderful. Until you
committed new pages, they were
invisible. The file got bigger, but
you couldn’t see the new pages
logically. The problem is that you
have to write whole pages to do
that, and if your transactions are
small, the log records will be
small and won’t take up whole
pages. Then, if you’ve carefully
got your file organized so that you
get several disk blocks per revolu¬
tion but your shadow pages end
up getting placed someplace else,
you’re going to use the heads a lot.
That makes the scheme seem
noticeably less efficient. But it’s
not clear that’s always impor¬
tant. Shadow pages really do offer
a lot of conveniences.

But, for high performance it
looks like locking and logging are
going to win. Maybe it’s not a
consensus; it’s probably contro¬
versial. But anyway, that’s the
way it looks to me.

REVIEW: Are you still working
on databases?

WEINBERGER: No. I ran out of
things I wanted to do. I’m still
prepared to speculate about data¬
bases, though.

REVIEW: Do you have any
speculations in mind?

WEINBERGER: You’ve heard a
lot of them already, put forward
as facts. We haven’t really men¬
tioned networking much, though.
We’ve talked mostly about ques¬
tions related to distributed data¬
bases. Of course, there’s a lot of
research being done on distribut¬
ed database systems, but it’s
never been quite clear that the
notion itself is really a good idea.
Distributed programs are hard to
understand. But you always have
to face up to the question of
networking when you talk about
database systems. That really
complicates things. ■

September 23-27 Computer Technology Group, Boston and
Washington, DC: “Berkeley Fundamentals and csh Shell”.

Contact: Computer Technology Group, 310 S. Michigan Ave.,
Chicago, IL 60604. 800/323-UNIX.
September 23-27 Bunker Ramo Information Systems, Trum¬

bull, CT: “Advanced C”. Contact: Bunker Ramo, Trumbull
Industrial Park, Trumbull, CT 06611. 203/386-2223.
September 23-27 Information Technology Development Corpo¬
ration, Cincinnati: “UNIX Systems Administration”. Contact:
ITDC, 9952 Pebbleknoll Dr., Cincinnati, OH 45247. 513/741-

8968.
September 25-27 Computer Technology Group, London:
“Advanced C Programming Under UNIX”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
September 25-27 Interactive Systems Corp., Santa Monica,
CA: “UNIX Architecture—A Conceptual Overview”. Contact:
Claire Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica,
CA 90404. 213/453-8649.
September 30-October 4 Computer Technology Group, Lon¬

don: “Berkeley Fundamentals and csh Shell”. Contact: Com¬
puter Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
September 30-October 4 Bunker Ramo Information Systems,
Trumbull, CT: “Intro to UNIX”. Contact: Bunker Ramo,
Trumbull Industrial Park, Trumbull, CT 06611.203/386-2223.
September 30-October 4 Interactive Systems Corp., Santa
Monica, CA: “The C Programming Language”. Contact: Claire
Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA
90404. 213/453-8649.

September 30-October 11 Information Technology Develop¬
ment Corporation, Cincinnati: “C Programming Language”.
Contact: ITDC, 9952 Pebbleknoll Dr., Cincinnati, OH 45247.
513/741-8968.

Please send announcements about training or events of
interest to: UNIX Review Calendar, 500 Howard Street, San
Francisco, CA 94105. Please include the sponsor, date and
location of event, address of contact, and relevant back¬
ground information.

COMPLETE
YOUR

NIX REVI
LIBRARY!

June/July
August/Septei
October/Nov<
December/Ja
February/M^
April/May 1
June 1984—
July 1984—
August 1984
September 1
October 19
November

985
98

January 1
February 1
March 1985
April 1985

983— UNIX on the IBM/PC □
mber 1983—Sritek and Venix . □
ember 1983—UNIX Typesetting □
nuary 1984—Vi and Emacs ... □
rch 1984—UNIX Databases . . . □

984— Menu-based User Interfaces □
Big Blue UNIX . □

The AT&T Family . □
—Documentation. □

984—System Administration ... □
UNIX on Big Iron . □

984—User Friendly UNIX . □
84

QCM_

—Evolution of UNIX. □
5—UNIX Portability. □
—Performance. □

UNIX Networking. □

May 1985—Distributed Resource Sharing ... □
June 1985—UNIX Applications . □
July 1985—Office Automation. □

Back issues are $4.95 each including postage. Pay¬
ment in advance is required. Send this order form
with check (US funds payable at US bank only) or
credit card information to: REVIEW Publications,
901 S. 3rd St., Renton, WA 98055.
Additional $ 1.00/issue for foreign mail.

Name

Company

Address _
City _ State .Zip
M/C or VISA #

Exp. Date _

UNIX REVIEW AUGUST 1985 107

ADVERTISER'S INDEX
Adax Inc.64
Artisan .91
AST Research, Inc. 101
AT&T Information Systems. 47,73
B.A.S.I.S.69
bbj Computer Services .75
Bell Technologies.86
Ceegen Corp.20
Century Software .68
Charles River Data Systems .71
Cleo Software .99
CMI Corp.67
Cogitate. 98
Computer Cognition .93
Computer Methods .7
Concentric Associates.38
Corporate Microsystems, Inc.21
COSI.83
DCC Data Service .98
Digital Equipment Corp. 10,11
DSD Corp.39
Dynacomp.74
Franz, Inc.90
Gould .85
Handle Technologies.Cover II
Image Network .89

Infosystems Technology, Inc.97
Integrated Solutions . 28,29
Mark Williams Company.9
Megadata Corp.65
Microware Systems.105,Cover IV
MIPS Software.93
Mt. XINU.22
NETI.Centerspread
Quality Software Products.89
R Systems, Inc. ..31
Relational Database Systems . 1,2,3
Santa Cruz Operation.62
Scientific Placement, Inc.90
SHA Computers.86
Sperry Corp.95
Unify Corp..27
Unipress Software. 13,15,17
Unitech Software, Inc. 18
United Airlines .57
University of Toronto.78
Uniworks. 77,79,81
UNIX Expo . 103
Verdix.23
Webco Industries, Inc. 106
Zanthe Information Systems.Cover III

COMING UP IN SEPTEMBER

Languages

• The State of Compiler Technology

• Language Tools Under UNIX

• The Art of Source Code Maintenance

• C Standards Efforts

• The Lisp Connection

108 UNIX REVIEW AUGUST 1985

For one week in SepternberKr.<™“ “ -

the heart oftlie UNIX universe
Join the thousands of your colleagues who will seek
answers to meet their business needs...and come away

CALENDAR

EVENTS

SEPTEMBER

September 18-20 National Expositions Inc., New York: “UNIX
EXPO”. Contact: Don Berey, 14 W. 40th St., New York, NY
10018. 212/391-9111.
September 26-28 8th Northeast Computer Faire, Boston. To be
augmented with UNIX Systems Expo/85-Fall. Contact: Com¬
puter Faire, Inc., 181 Wells Ave., Newton, MA 02159.617/965-
8350.

TRAINING

AUGUST

August 6 LUCID, New York: “UNIX System Files”. Contact:
Alice Moss, 260 Fifth Ave., Suite 901, New York/NY 10001.
212/807-9444.
August 5-6 Computer Technology Group, San Francisco and
Dallas: “Advanced C Programming Workshop”. Contact:
Computer Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
August 5-6 Interactive Systems Corp., Santa Monica, CA:
“Advanced Commands for Programmers”. Contact: Claire
Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA
90404. 213/453-8649.
August 5-7 Computer Technology Group, Boston and Washing¬
ton, DC: “UNIX Fundamentals for Programmers”. Contact:
Computer Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
August 5-9 Information Technology Development Corporation,
Cincinnati: “UNIX for End Users”. Contact: ITDC, 9952
Pebbleknoll Dr., Cincinnati, OH 45247. 513/741-8968.
August 6 Computer Technology Group, London: “UNIX
Overview”. Contact: Computer Technology Group, 310 S.
Michigan Ave., Chicago, IL 60604. 800/323-UNIX.
August 7-9 Interactive Systems Corp., Santa Monica, CA:
“UNIX Architecture: A Conceptual Overview”. Contact: Claire
Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA
90404. 213/453-8649.
August 7-9 Computer Technology Group, Dallas and San
Francisco: “Advanced C Programming Under UNIX”. Contact:
Computer Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
August 7-9 Computer Technology Group, London: “Unix
Fundamentals for Non-Programmers”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
August 7-9 Digital Equipment Corp., Houston: “Comprehen¬
sive Overview of the UNIX Operating System”. Contact: Digital
Education Resources, 12 Crosby Drive, Bedford, MA 01730.
617/276-4949.
August 8-9 Computer Technology Group, Boston and Washing¬
ton, DC: “Shell as a Command Language”. Contact: Computer

Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
August 12-14 Computer Technology Group, London: “UNIX
Fundamentals for Non-Programmers”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
August 12-16 Computer Technology Group, San Francisco:
“Berkeley Fundamentals and csh Shell”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
August 12-16 Interactive Systems Corp., Santa Monica, CA:
“The C Programming Language”. Contact: Claire Donahue,
2401 Colorado Ave., 3rd floor, Santa Monica, CA 90404. 213/
453-8649.

August 12-16 Computer Technology Group, Boston and
Washington, DC: “C Language Programming”. Contact: Com¬
puter Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
August 12-16 Computer Technology Group, Dallas: “Berkeley
Fundamentals and csh Shell”. Contact: Computer Technology
Group, 310 S. Michigan Ave., Chicago, IL 60604. 800/323-
UNIX.
August 12-16 Bunker Ramo Information Systems, Trumbull,
CT: “Advanced C”. Contact: Bunker Ramo, Trumbull Industrial
Park. Trumbull, CT 06611. 203/386-2223.
August 12-16 Information Technology Development Corpora¬
tion, Cincinnati: “INFORMIX Relational Data Base”. Contact:
ITDC, 9952 Pebbleknoll Dr., Cincinnati, OH 45247. 513/741-
8968.
August 15-16 Computer Technology Group, London: “Shell as
a Command Language”. Contact: Computer Technology Group,
310 S. Michigan Ave., Chicago, IL 60604. 800/323-UNIX.
August 19-20 Productivity Products International, Aspen, CO:
“The Concepts of Object-Oriented Programming”. Contact:
Barbara Dunn, Productivity Products Int’l, 27 Glen Rd., Sandy
Hook, CT 06482. 203/426-1875.
August 19-20 Computer Technology Group, Boston and
Washington, DC: “Shell Programming”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
August 19-20 Interactive Systems Corp., Santa Monica, CA:
“Advanced Topics for C Programmers”. Contact: Claire Dona¬
hue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA 90404.
213/453-8649.
August 19-23 Bunker Ramo Information Systems, Trumbull,
CT: “C Programming”. Contact: Bunker Ramo, Trumbull
Industrial Park, Trumbull, CT 06611. 203/386-2223.
August 19-23 Computer Technology Group, London: “C
Language Programming”. Contact: Computer Technology
Group, 310 S. Michigan Ave., Chicago, IL 60604. 800/323-
UNIX.
August 19-23 Information Technology Development Corpora¬
tion, Cincinnati: “Bourne Shell Programming”. Contact: ITDC,

104 UNIX REVIEW AUGUST 1985

9952 Pebbleknoll Dr.
August 20 Computi
Angeles: “UNIX Ov

Group, 310 S. Micl
UNIX.
August 20 Silicon V<
System”. Contact: G
CA 95170-0251, 415,
August 21-23 Compi

Angeles: “UNIX Fu
tact: Computer Te<
Chicago, IL 60604.
August 21-23 Coi
Washington, DC: “Uj
Computer Technology
60604. 800/323-UN|;
August 21-23 Intel
“Advanced C Progi
Donahue, 2401 Co)
90404. 213/453-864!
August 26-28 Compi
Angeles: “UNIX Fu
Computer Technology
60604. 800/323-UNt
August 26-30 Intel
“Ten/Plus Helper Wril
2401 Colorado Ave.
453-8649.
August 26-30 Coi
Washington, DC: “Uf]
nology Group, 310
323-UNIX.
August 26-30 In fori
tion, Cincinnati: “C
Pebbleknoll Dr., Cind
August 28-30 Digital
sive Overview of the
Education Resources
617/276-4949.
August 29-30 Comjj)i
Angeles: “Shell as a
Technology Group,
800/323-UNIX.

SEPTEMBER

September 2-3 Com
Programming”. Conti
Michigan Ave., Chics^
September 3-5 LUC 0
ming”. Contact: Alip
York, NY 10001. 21
September 4-6 Intel

“INword Word Processi
2401 Colorado Ave.,

453-8649.

September 4-6 Com

Advanced UNIX Coi

Group, 310 S. Mic

UNIX.
September 4-6 Com

Internals”. Contact
Michigan Ave., Chic
September 9-11 Inti

., Cincinnati, OH 45247. 513/741-8968.
er Technology Group, Chicago and Los
erview”. Contact: Computer Technology

t igan Ave., Chicago, IL 60604. 800/323-

cilley Net, Palo Alto, CA: “NFS: Network File
rrant E. Rostig, PO Box 700251, San Jose,
/593-9445.
iuter Technology Group, Chicago and Los

ndamentals for Non-Programmers”. Con-
ichnology Group, 310 S. Michigan Ave.,
800/323-UNIX.
rnputer Technology Group, Boston and
sing Advanced UNIX Commands”. Contact:

Group, 310 S. Michigan Ave., Chicago, IL
X.
ctive Systems Corp., Santa Monica, CA:

Hamming Under UNIX”. Contact: Claire
ilprado Ave., 3rd floor, Santa Monica, CA

9.
iuter Technology Group, Chicago and Los
ndamentals for Programmers”. Contact:

Group, 310 S. Michigan Ave., Chicago, IL
[X.
ctive Systems Corp., Santa Monica, CA:
Iter Workshop”. Contact: Claire Donahue,
3rd floor, Santa Monica, CA 90404. 213/

rnputer Technology Group. Boston and
NIX Internals”. Contact: Computer Tech-
i. Michigan Ave., Chicago, IL 60604. 800/

ination Technology Development Corpora-
Shell Programming”. Contact: ITDC, 9952
innati, OH 45247. 513/741-8968.

Equipment Corp., Chicago: “Comprehen-
UNIX Operating System”. Contact: Digital

12 Crosby Drive, Bedford, MA 01730.

iuter Technology Group, Chicago and Los
Command Language”. Contact: Computer

310 S. Michigan Ave., Chicago, IL 60604.

puter Technology Group, London: “Shell
act: Computer Technology Group, 310 S.

c4go, IL 60604. 800/323-UNIX.
D, New York, NY: “UNIX Shell Program-
:e Moss, 260 Fifth Ave., Suite 901, New

2/807-9444.
ractive Systems Corp., Santa Monica, CA:

ing Workshop”. Contact: Claire Donahue,
3rd floor, Santa Monica, CA 90404. 213/

puter Technology Group, London: “Using

mmands”. Contact: Computer Technology

higan Ave., Chicago, IL 60604. 800/323-

puter Technology Group, London: “UNIX
Computer Technology Group, 310 S.

kgo, IL 60604. 800/323-UNIX.
tractive Systems Corp., Santa Monica, CA:

NOVEMBER
1, 2, 3, 4

Pre-Registration Only!

• Exhibits

• Speakers

• Latest Hardware

• Newest Software

• Technical Sessions
for 6809 & 68000

Meet people making it happen in OS-9. The movers and shakers

who are helping OS-9 become the fastest growing operating

system for the 6809 & 68000 in the world.

Lively and informative round-table discussions will cover the

design and use of Microware Software. We'll also discuss OS-9's

dynamic growth from where we are today to where we may be

in the future.

The exhibit area will feature booths from many of the leading

suppliers of OS-9 compatible hardware and software. It's a great

opportunity to increase your skill and knowledge in the latest

microcomputer software technology. Plan to attend — Register
Today!

Seminar only $150 Hotel Package* $350
Location Marriott Hotel, Des Moines, IA
Don’t Miss It — Pre-Register Now!
Call 515-224-1929 or Write
MICROWARE SYSTEMS CORPORATION
1866 N.W. 114th St. • Des Moines, IA 50322

nictowaM>-

*Hotel package includes 3 nights, single occupancy at the Marriott Hotel
and registration fee.
OS-9 and BASIC09 are trademarks of Microware and Motorola

U CALENDAR

“UNIX Fundamentals”. Contact: Claire Donahue, 2401 .Colora¬
do Ave., 3rd floor, Santa Monica, CA 90404. 213/453-8649.
September 9-12 LUCID, New York, NY: ‘‘UNIX System
Administration”. Contact: Alice Moss, 260 Fifth Ave., Suite
901, New York, NY 10001. 212/807-9444.
September 9-13 Bunker Ramo Information Systems, Trum¬
bull, CT: “Advanced UNIX”. Contact: Bunker Ramo, Trumbull
Industrial Park, Trumbull, CT 06611. 203/386-2223.
September 9-13 Computer Technology Group. Chicago and Los
Angeles: “C Language Programming”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.

800/323-UNIX.
September 9-20 Information Technology Development Corpo¬
ration, Cincinnati: “UNIX for Application Developers”. Contact:
ITDC, 9952 Pebbleknoll Dr., Cincinnati, OH 45247. 513/741-

8968.
September 10-12 Bunker Ramo Information Systems, Trum¬
bull, CT: “Diagnostic UNIX”. Contact: Bunker Ramo, Trumbull
Industrial Park, Trumbull, CT 06611. 203/386-2223.
September 10-12 Computer Technology Group, Boston and
Washington, DC: “UNIX Administration”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.
800/323-UNIX.
September 10-13 Integrated Computer Systems, Los Angeles
and Washington, DC: “UNIX: A Comprehensive Introduction”.
Contact: ICS, 45405, Los Angeles, CA 90045. 213/417-8888.

■-1

! UNIX*-C COURSES
THE UNIX SYSTEM FOR END USERS

Sept 9-13 • Oct 7-11 • Oct 28-Nov 1

THE UNIX SYSTEM FOR THE DP
PROFESSIONAL

Sept 16-20 • Sept 30-Oct 4
Nov 4-8 • Dec 9-13

C LANGUAGE PROGRAMMING
Sept 23-27 • Nov 18-22 • Dec 2-6

HANDS-ON SESSIONS IN ALL COURSES

COURSE FEE AS LOW AS $855

DISCOUNTS FOR EARLY REGISTRATION

I COURSE LOCATION I
WASHINGTON, D.C.

METROPOLITAN AREA
| On-Site and customized courses also available. Write |
| or call for course descriptions and registration |
| information. |

(301) 498-0722
WEBCO INDUSTRIES, INC.

14918 LAUREL OAKS LANE
LAUREL, MARYLAND 20707

J 'UNIX Is a trademark oI AT&T Bell Laboratories

I-^X^CLIP AND SAVE-—J

Circle No. 44 on Inquiry Card

106 UNIX REVIEW AUGUST 1985

September 12-13 Interactive Systems Corp., Santa Monica,

CA: “Using the Shell”. Contact: Claire Donahue, 2401 Colorado

Ave., 3rd floor, Santa Monica, CA 90404. 213/453-8649.
September 16-17 Interactive Systems Corp., Santa Monica,
CA: “System Administrator’s Overview”. Contact: Claire
Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA
90404. 213/453-8649.
September 16-17 Computer Technology Group, Chicago and
Los Angeles: “Shell Programming”. Contact: Computer Tech¬
nology Group, 310 S. Michigan Ave., Chicago, IL 60604. 800/
323-UNIX.
September 16-17 Computer Technology Group, Boston and
Washington, DC: "Advanced C Programming Workshop”.
Contact: Computer Technology Group, 310 S. Michigan Ave.,
Chicago, IL 60604. 800/323-UNIX.
September 16-18 CL Publications, Cambridge. MA: “C Techni¬
cal Seminar”. Contact: Carl Landau, CL Publications, 131
Townsend St., San Francisco, CA 94107. 415/957-9353.
September 16-19 AT&T Information Systems, Callaway
Gardens, GA: “UNIX OS: The First Step”. Contact: AT&T
Information Systems’ Institute for Communications and Infor¬
mation Management, PO Box 8, Pine Mountain, GA 31822-
0008. 800/247-1212.
September 17-18 Bunker Ramo Information Systems, Trum¬
bull. CT: “UNIX/C Applications”. Contact: Bunker Ramo,
Trumbull Industrial Park, Trumbull, CT 06611.203/386-2223.
September 17-20 LUCID, New York. NY: “Advanced C
Programming”. Contact: Alice Moss, 260 Fifth Ave., Suite 901,
New York. NY 10001. 212/807-9444.
September 18-20 Computer Technology Group, Chicago and
Los Angeles: “Using Advanced UNIX Commands”. Contact:
Computer Technology Group, 310 S. Michigan Ave., Chicago, IL
60604. 800/323-UNIX.
September 18-20 Computer Technology Group, London: “UNIX
Administration”. Contact: Computer Technology Group, 310 S.
Michigan Ave., Chicago, IL 60604. 800/323-UNIX.
September 18-20 Computer Technology Group, Boston and
Washington, DC: “Advanced C Programming Under UNIX”.
Contact: Computer Technology Group, 310 S. Michigan Ave.,
Chicago, IL 60604. 800/323-UNIX.
September 18-20 Digital Equipment Corp., New York: “Com¬
prehensive Overview of the UNIX Operating System”. Contact:
Digital Education Resources, 12 Crosby Drive, Bedford, MA

01730. 617/276-4949.
September 18-20 Interactive Systems Corp., Santa Monica,

CA: “Interactive Networking Tools”. Contact: Claire Donahue,
2401 Colorado Ave., 3rd floor, Santa Monica, CA 90404. 213/

453-8649.
September 23-24 Computer Technology Group, London:
“Advanced C Programming Workshop”. Contact: Computer
Technology Group, 310 S. Michigan Ave., Chicago, IL 60604.

800/323-UNIX.
September 23-24 Productivity Products International, Raleigh,
NC: “The Concepts of Object-Oriented Programming”. Contact:
Barbara Dunn. Productivity Products Int’l, 27 Glen Rd., Sandy

Hook. CT 06482. 203/426-1875.
September 23-24 Interactive Systems Corp., Santa Monica,
CA: “Advanced Commands for Programmers”. Contact: Claire
Donahue, 2401 Colorado Ave., 3rd floor, Santa Monica, CA

90404. 213/453-8649.
September 23-27 Computer Technology Group, Chicago and
Los Angeles: “UNIX Internals”. Contact: Computer Technology
Group, 310 S. Michigan Ave., Chicago, IL 60604. 800/323-

UNIX.

"Ylatune CVn/aoaea Tew
Reatnictiona on 7ho*e
Daninq Enough to Lead’

ZIM is a fully integrated fourth
generation application development
system designed for leading system
integrators and corporate and
independent applications developers.

"COMPLETE DEVELOPMENT
ENVIRONMENT
-Report Writer
-Forms Painter and Manager
-Data Dictionary
-Application Generator
-Non-procedural Programming
Language

-Compiler
-C Language Interface
-Runtime System

*POST RELATIONAL
-Entity Relationship Model
-Powerful extension of Relational
Model

"MAINFRAME POWER,
FUNCTIONALITY AND
PERFORMANCE

"APPLICATIONS PORTABILITY
-MS-DOS, UNIX, XENIX, and QNX

"MULTI-USER
-Full transaction processing control

"NETWORKING
"APPLICATIONS LIMITED ONLY

BY HARDWARE
"BUILT-IN STRATEGY

OPTIMIZER
"ENGLISH-LIKE LANGUAGE
"QUALITY PRODUCT SUPPORT
ZIM is a mainframe system that runs
on micro-computers and on super
micro-computers. If you want
mainframe power, speed, flexibility and
freedom from arbitrary limitations all
at a micro price, talk to us about an
evaluation system.
Dealer inquiries are welcome.

m

^ v

Vftmmy

HEuB
The Information Interface

Z6NTHE
1785 Woodward Dr., Ottawa, Ontario

K2C0R1 (613)727-1397
MS-DOS and XENIX .ire Microsoft Corp. tradema
UNIX is an AT&T trademark. QNX is a Quantu
Software Systems trademark.

rks. /

A-
A*

//

A*
Circle No. 56 on Inquiry Card

Only Microware's OS-9
Operating System Covers

the Entire 68000 Spectrum

Is complicated software and expensive hardware
keeping you back from Unix? Look into OS-9, the
operating system from Microware that gives 68000 systems
a Unix-style environment with much less overhead and
complexity.

OS-9 is versatile, inexpensive, and delivers outstanding
performance on any size system. The OS-9 executive is
much smaller and far more ef¬
ficient than Unix because it's
written in fast, compact as¬
sembly language, making it
ideal for critical real-time ap¬
plications. OS-9 can run on
a broad range of 8 to 32 bit
systems based on the 68000
or 6809 family MPUs from
ROM-based industrial con¬
trollers up to large multiuser
systems.

OS-9'S OUTSTANDING
C COMPILER IS

YOUR BRIDGE TO UNIX
Microwares C compiler tech¬

nology is another OS-9 advantage. The compiler produces
extremely fast, compact, and ROMable code. You can easily
develop and port system or application software back and
forth to standard Unix systems. Cross-compiler versions for

VAX and PDP-11 make coordinated Unix/OS-9 software
development a pleasure.

SUPPORT FOR MODULAR SOFTWARE
- AN OS-9 EXCLUSIVE

Comprehensive support for modular software puts OS-9
a generation ahead of other operating systems. It multiplies
programmer productivity and memory efficiency. Applica¬

tion software can be built
from individually testable
software modules including
standard 'library" modules.
The modular structure lets
you customize and recon¬
figure OS-9 for specific hard¬
ware easily and quickly.

A SYSTEM WITH
A PROVEN

TRACK RECORD
Once an underground

classic, OS-9 is now a solid
hit. Since 1980 OS-9 has
been ported to over a hun¬
dred 6809 and 68000

systems under license to some of the biggest names in the
business. OS-9 has been imbedded in numerous consumer,
industrial, and OEM products, and is supported by many
independent software suppliers.

Key OS-9 Features At A Glance
• Compact (16K) ROMable executive written in assembly

language
• User “shell” and complete utility set written in C
• C-source code level compatibility with Unix
• Full Multitasking/multiuser capabilities
• Modular design - extremely easy to adapt, modify, or

expand
• Unix-type tree structured file system
• Rugged “crash-proof” file structure with record locking
• Works well with floppy disk or ROM-based systems
• Uses hardware or software memory management
• High performance C, Pascal, Basic and Cobol compilers

OS-9
MICROWARE SYSTEMS CORPORATION
1866 NW 114th Street

Des Moines, Iowa 50322
Phone 515-224-1929

Telex 910-520-2535

Microware Japan, Ltd
3-8-9 Baraki, Ichikawa City
Chiba 272-01, Japan
Phone 0473(28)4493

Telex 299-3122
OS-9 is a trademark of Microware and Motorola. Unix is a trademark of Bell Labs.

